scholarly journals Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification

2021 ◽  
Vol 15 ◽  
Author(s):  
Ming Gao ◽  
Runmin Liu ◽  
Jie Mao

Electroencephalogram (EEG) is often used in clinical epilepsy treatment to monitor electrical signal changes in the brain of patients with epilepsy. With the development of signal processing and artificial intelligence technology, artificial intelligence classification method plays an important role in the automatic recognition of epilepsy EEG signals. However, traditional classifiers are easily affected by impurities and noise in epileptic EEG signals. To solve this problem, this paper develops a noise robustness low-rank learning (NRLRL) algorithm for EEG signal classification. NRLRL establishes a low-rank subspace to connect the original data space and label space. Making full use of supervision information, it considers the local information preservation of samples to ensure the low-rank representation of within-class compactness and between-classes dispersion. The asymmetric least squares support vector machine (aLS-SVM) is embedded into the objective function of NRLRL. The aLS-SVM finds the maximum quantile distance between the two classes of samples based on the pinball loss function, which further improves the noise robustness of the model. Several classification experiments with different noise intensity are designed on the Bonn data set, and the experiment results verify the effectiveness of the NRLRL algorithm.

A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


2017 ◽  
Vol 10 (13) ◽  
pp. 137
Author(s):  
Darshan A Khade ◽  
Ilakiyaselvan N

This study aims to classify the scene and object using brain waves signal. The dataset captured by the electroencephalograph (EEG) device by placing the electrodes on scalp to measure brain signals are used. Using captured EEG dataset, classifying the scene and object by decoding the changes in the EEG signals. In this study, independent component analysis, event-related potentials, and grand mean are used to analyze the signal. Machine learning algorithms such as decision tree, random forest, and support vector machine are used to classify the data. This technique is useful in forensic as well as in artificial intelligence for developing future technology. 


2011 ◽  
Vol 21 (03) ◽  
pp. 247-263 ◽  
Author(s):  
J. P. FLORIDO ◽  
H. POMARES ◽  
I. ROJAS

In function approximation problems, one of the most common ways to evaluate a learning algorithm consists in partitioning the original data set (input/output data) into two sets: learning, used for building models, and test, applied for genuine out-of-sample evaluation. When the partition into learning and test sets does not take into account the variability and geometry of the original data, it might lead to non-balanced and unrepresentative learning and test sets and, thus, to wrong conclusions in the accuracy of the learning algorithm. How the partitioning is made is therefore a key issue and becomes more important when the data set is small due to the need of reducing the pessimistic effects caused by the removal of instances from the original data set. Thus, in this work, we propose a deterministic data mining approach for a distribution of a data set (input/output data) into two representative and balanced sets of roughly equal size taking the variability of the data set into consideration with the purpose of allowing both a fair evaluation of learning's accuracy and to make reproducible machine learning experiments usually based on random distributions. The sets are generated using a combination of a clustering procedure, especially suited for function approximation problems, and a distribution algorithm which distributes the data set into two sets within each cluster based on a nearest-neighbor approach. In the experiments section, the performance of the proposed methodology is reported in a variety of situations through an ANOVA-based statistical study of the results.


2020 ◽  
Vol 1 (1) ◽  
pp. 35-42
Author(s):  
Péter Ekler ◽  
Dániel Pásztor

Összefoglalás. A mesterséges intelligencia az elmúlt években hatalmas fejlődésen ment keresztül, melynek köszönhetően ma már rengeteg különböző szakterületen megtalálható valamilyen formában, rengeteg kutatás szerves részévé vált. Ez leginkább az egyre inkább fejlődő tanulóalgoritmusoknak, illetve a Big Data környezetnek köszönhető, mely óriási mennyiségű tanítóadatot képes szolgáltatni. A cikk célja, hogy összefoglalja a technológia jelenlegi állapotát. Ismertetésre kerül a mesterséges intelligencia történelme, az alkalmazási területek egy nagyobb része, melyek központi eleme a mesterséges intelligencia. Ezek mellett rámutat a mesterséges intelligencia különböző biztonsági réseire, illetve a kiberbiztonság területén való felhasználhatóságra. A cikk a jelenlegi mesterséges intelligencia alkalmazások egy szeletét mutatja be, melyek jól illusztrálják a széles felhasználási területet. Summary. In the past years artificial intelligence has seen several improvements, which drove its usage to grow in various different areas and became the focus of many researches. This can be attributed to improvements made in the learning algorithms and Big Data techniques, which can provide tremendous amount of training. The goal of this paper is to summarize the current state of artificial intelligence. We present its history, introduce the terminology used, and show technological areas using artificial intelligence as a core part of their applications. The paper also introduces the security concerns related to artificial intelligence solutions but also highlights how the technology can be used to enhance security in different applications. Finally, we present future opportunities and possible improvements. The paper shows some general artificial intelligence applications that demonstrate the wide range usage of the technology. Many applications are built around artificial intelligence technologies and there are many services that a developer can use to achieve intelligent behavior. The foundation of different approaches is a well-designed learning algorithm, while the key to every learning algorithm is the quality of the data set that is used during the learning phase. There are applications that focus on image processing like face detection or other gesture detection to identify a person. Other solutions compare signatures while others are for object or plate number detection (for example the automatic parking system of an office building). Artificial intelligence and accurate data handling can be also used for anomaly detection in a real time system. For example, there are ongoing researches for anomaly detection at the ZalaZone autonomous car test field based on the collected sensor data. There are also more general applications like user profiling and automatic content recommendation by using behavior analysis techniques. However, the artificial intelligence technology also has security risks needed to be eliminated before applying an application publicly. One concern is the generation of fake contents. These must be detected with other algorithms that focus on small but noticeable differences. It is also essential to protect the data which is used by the learning algorithm and protect the logic flow of the solution. Network security can help to protect these applications. Artificial intelligence can also help strengthen the security of a solution as it is able to detect network anomalies and signs of a security issue. Therefore, the technology is widely used in IT security to prevent different type of attacks. As different BigData technologies, computational power, and storage capacity increase over time, there is space for improved artificial intelligence solution that can learn from large and real time data sets. The advancements in sensors can also help to give more precise data for different solutions. Finally, advanced natural language processing can help with communication between humans and computer based solutions.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Yan ◽  
Hua Shi ◽  
Tao He ◽  
Jian Chen ◽  
Chen Wang ◽  
...  

ObjectiveIn order to enhance the detection rate of multiple myeloma and execute an early and more precise disease management, an artificial intelligence assistant diagnosis system is developed.Methods4,187 routine blood and biochemical examination records were collected from Shengjing Hospital affiliated to China Medical University from January 2010 to January 2020, which include 1,741 records of multiple myeloma (MM) and 2,446 records of non-myeloma (infectious diseases, rheumatic immune system diseases, hepatic diseases and renal diseases). The data set was split into training and test subsets with the ratio of 4:1 while connecting hemoglobin, serum creatinine, serum calcium, immunoglobulin (A, G and M), albumin, total protein, and the ratio of albumin to globulin data. An early assistant diagnostic model of MM was established by Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), Deep Neural Networks (DNN), and Random Forest (RF). Out team calculated the precision and recall of the system. The performance of the diagnostic model was evaluated by using the receiver operating characteristic (ROC) curve.ResultsBy designing the features properly, the typical machine learning algorithms SVM, DNN, RF and GBDT all performed well. GBDT had the highest precision (92.9%), recall (90.0%) and F1 score (0.915) for the myeloma group. The maximized area under the ROC (AUROC) was calculated, and the results of GBDT (AUC: 0.975; 95% confidence interval (CI): 0.963–0.986) outperformed that of SVM, DNN and RF.ConclusionThe model established by artificial intelligence derived from routine laboratory results can accurately diagnose MM, which can boost the rate of early diagnosis.


Author(s):  
R. Gopinath ◽  
C. Santhosh Kumar ◽  
K. Vishnuprasad ◽  
K. I. Ramachandran

Support vector machine (SVM) is a popular machine learning algorithm used extensively in machine fault diagnosis. In this paper, linear, radial basis function (RBF), polynomial, and sigmoid kernels are experimented to diagnose inter-turn faults in a 3kVA synchronous generator. From the preliminary results, it is observed that the performance of the baseline systemis not satisfactory since the statistical features are nonlinear and does not match to the kernels used. In this work, the features are linearized to a higher dimensional space to improve the performance of fault diagnosis system for a synchronous generator using feature mapping techniques, sparse coding and locality constrained linear coding (LLC). Experiments and results show that LLC is superior to sparse coding for improving the performance of fault diagnosis of a synchronous generator. For the balanced data set, LLC improves the overall fault identification accuracy of the baseline RBF system by 22.56%, 18.43% and 17.05% for the R, Y and Bphase faults respectively.


Brain-computer interface (BCI) has emerged as a popular research domain in recent years. The use of electroencephalography (EEG) signals for motor imagery (MI) based BCI has gained widespread attention. The first step in its implementation is to fetch EEG signals from scalp of human subject. The preprocessing of EEG signals is done before applying feature extraction, selection and classification techniques as main steps of signal processing. In preprocessing stage, artifacts are removed from raw brain signals before these are input to next stage of feature extraction. Subsequently classifier algorithms are used to classify selected features into intended MI tasks. The major challenge in a BCI systems is to improve classification accuracy of a BCI system. In this paper, an approach based on Support Vector Machine (SVM), is proposed for signal classification to improve accuracy of the BCI system. The parameters of kernel are varied to attain improvement in classification accuracy. Independent component analysis (ICA) technique is used for preprocessing and filter bank common spatial pattern (FBCSP) for feature extraction and selection. The proposed approach is evaluated on data set 2a of BCI Competition IV by using 5-fold crossvalidation procedure. Results show that it performs better in terms of classification accuracy, as compared to other methods reported in literature.


2012 ◽  
Vol 461 ◽  
pp. 818-821
Author(s):  
Shi Hu Zhang

The problem of real estate prices are the current focus of the community's concern. Support Vector Machine is a new machine learning algorithm, as its excellent performance of the study, and in small samples to identify many ways, and so has its unique advantages, is now used in many areas. Determination of real estate price is a complicated problem due to its non-linearity and the small quantity of training data. In this study, support vector machine (SVM) is proposed to forecast the price of real estate price in China. The experimental results indicate that the SVM method can achieve greater accuracy than grey model, artificial neural network under the circumstance of small training data. It was also found that the predictive ability of the SVM outperformed those of some traditional pattern recognition methods for the data set used here.


2011 ◽  
Vol 474-476 ◽  
pp. 1-6
Author(s):  
Guo Xing Peng ◽  
Bei Li

Improved learning algorithm for branch and bound for semi-supervised support vector machines is proposed, according to the greater difference in the optimal solution in different semi-supervised support vector machines for the same data set caused by the local optimization. The lower bound of node in IBBS3VM algorithm is re-defined, which will be pseudo-dual function value as the lower bound of node to avoid the large amount of calculation of 0-1 quadratic programming, reducing the lower bound of each node calculate the time complexity; at the same time, in determining the branch nodes, only based on the credibility of the unlabeled samples without the need to repeatedly carry out the training of support vector machines to enhance the training speed of the algorithm. Simulation analysis shows that IBBS3VM presented in this paper has faster training speed than BBS3VM algorithms, higher precision and stronger robustness than the other semi-supervised support vector machines.


Sign in / Sign up

Export Citation Format

Share Document