scholarly journals Lovastatin Alleviates α-Synuclein Aggregation and Phosphorylation in Cellular Models of Synucleinopathy

2021 ◽  
Vol 14 ◽  
Author(s):  
Lijun Dai ◽  
Jiannan Wang ◽  
Mingyang He ◽  
Min Xiong ◽  
Ye Tian ◽  
...  

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Pathologically, it is characterized by the aberrant aggregation of α-synuclein (α-syn) in neurons. Clinical evidence shows that patients with hypercholesterolemia are more likely to get PD, while lovastatin users have a lower risk of suffering from it. In this study, we investigated the effects of lovastatin on the aggregation and phosphorylation of α-syn in vitro. Our results demonstrate that α-syn preformed fibrils induce the phosphorylation and aggregation of α-syn in HEK293 cells stably transfected with α-syn-GFP and SH-SY5Y cells as well, which could be attenuated by in a concentration-dependent manner. Besides, lovastatin inhibited oxidative stress, histone acetylation, and the activation of casein kinase 2 (CK2). Collectively, lovastatin alleviates α-syn aggregation and phosphorylation in cellular models of synucleinopathy, indicating its potential value of being adopted in the management of PD.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lijun Fang ◽  
Wei Wang ◽  
Jiazheng Chen ◽  
Anju Zuo ◽  
Hongmei Gao ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the extensive accumulation of myofibroblasts and collagens. However, the exact mechanism that underlies this condition is unclear. Growing evidence suggests that NADPH oxidases (NOXs), especially NOX4-derived oxidative stress, play an important role in the development of lung fibrosis. Bleomycin (BLM) is a tumor chemotherapeutic agent, which has been widely employed to establish IPF animal models. Osthole (OST) is an active constituent of the fruit of Cnidium ninidium. Here, we used an in vivo mouse model and found that OST suppressed BLM-induced body weight loss, lung injury, pulmonary index increase, fibroblast differentiation, and pulmonary fibrosis. OST also significantly downregulated BLM-induced NOX4 expression and oxidative stress in the lungs. In vitro, OST could inhibit TGF-β1-induced Smad3 phosphorylation, differentiation, proliferation, collagen synthesis, NOX4 expression, and ROS generation in human lung fibroblasts in a concentration-dependent manner. Moreover, NOX4 overexpression could prevent the above effects of OST. We came to the conclusion that OST could significantly attenuate BLM-induced pulmonary fibrosis in mice, via the mechanism that involved downregulating TGF-β1/NOX4-mediated oxidative stress in lung fibroblasts.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 892 ◽  
Author(s):  
Zetty Zulikha Hafiz ◽  
Muhammad ‘Afif Mohd Amin ◽  
Richard Muhammad Johari James ◽  
Lay Kek Teh ◽  
Mohd Zaki Salleh ◽  
...  

Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats’ model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer’s disease through inhibiting the AChE, inflammation, and oxidative stress activities.


2019 ◽  
Vol 20 (11) ◽  
pp. 2680 ◽  
Author(s):  
Xia Zhao ◽  
Jiankang Fang ◽  
Shuai Li ◽  
Uma Gaur ◽  
Xingan Xing ◽  
...  

Oxidative stress is believed to be one of the main causes of neurodegenerative diseases such as Alzheimer’s disease (AD). The pathogenesis of AD is still not elucidated clearly but oxidative stress is one of the key hypotheses. Here, we found that artemisinin, an anti-malarial Chinese medicine, possesses neuroprotective effects. However, the antioxidative effects of artemisinin remain to be explored. In this study, we found that artemisinin rescued SH-SY5Y and hippocampal neuronal cells from hydrogen peroxide (H2O2)-induced cell death at clinically relevant doses in a concentration-dependent manner. Further studies showed that artemisinin significantly restored the nuclear morphology, improved the abnormal changes in intracellular reactive oxygen species (ROS), reduced the mitochondrial membrane potential, and caspase-3 activation, thereby attenuating apoptosis. Artemisinin also stimulated the phosphorylation of the adenosine monophosphate -activated protein kinase (AMPK) pathway in SH-SY5Y cells in a time- and concentration-dependent manner. Inhibition of the AMPK pathway attenuated the protective effect of artemisinin. These data put together suggested that artemisinin has the potential to protect neuronal cells. Similar results were obtained in primary cultured hippocampal neurons. Cumulatively, these results indicated that artemisinin protected neuronal cells from oxidative damage, at least in part through the activation of AMPK. Our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
James T. T. Coates ◽  
Gonzalo Rodriguez-Berriguete ◽  
Rathi Puliyadi ◽  
Thomas Ashton ◽  
Remko Prevo ◽  
...  

Abstract Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.


2009 ◽  
Vol 4 (5) ◽  
pp. 1934578X0900400
Author(s):  
Pilar Zafrilla ◽  
Juana M Morulas ◽  
José M. Rubio-Perez ◽  
Emma Cantos Villar

Several studies have indicated that oxidative stress is a major risk factor for the initiation and progression of neurological disorders like Parkinson's disease (PD) and Alzheimer's (AD). Therefore, reducing oxidative stress appears to be a rational choice for the prevention and reduction in the rate of progression of these neurological disorders. The brain utilizes about 25% of respired oxygen even though it represents only 5% of the body weight. Free radicals are generated during the normal intake of oxygen, during infection, and during normal oxidative metabolism of certain substrates. Although experimental data are consistent in demonstrating the neuroprotective effects of antioxidants in vitro and in animal models, the clinical evidence that antioxidant agents may prevent or slow the course of these diseases is still relatively unsatisfactory, and insufficient to strongly modify clinical practice. In this paper, natural possible substances that could be added to a beverage to prevent or decrease the developing of neurodegenerative diseases are reviewed.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Ehab A. Abourashed ◽  
Aida Abraha ◽  
Shabana I. Khan ◽  
Tanika McCants ◽  
Saad Awan

In our ongoing search for anti-inflammatory and neuroprotective agents of natural origin, the total methanolic extract (MPE) of horse apple (Maclura pomifera) and its two major prenylated isoflavones, osajin (OSA) and pomiferin (POM), were evaluated in vitro for their ability to affect four mediators of inflammation and to inhibit tau protein fibrillization. The two isoflavones were effective in enhancing the activity of NSAID activated gene (NAG-1) at 2.5 μg/mL (1.5 – 1.8 fold increase) and inhibiting iNOS and NF-κB activity with IC50 values in the range of 6 – 13 μg/mL. Pomiferin also inhibited intracellular oxidative stress with IC50 of 3.3 μg/mL, while osajin did not show any effect. The extract activated NAG-1 and inhibited iNOS and oxidative stress without affecting NF-κB. As observed by transmission electron microscopy (TEM), MPE, OSA and POM also inhibited arachidonic acid-induced tau fibrillization in a concentration-dependent manner.


2021 ◽  
Vol 12 ◽  
Author(s):  
Burong Feng ◽  
Xiuye Zhao ◽  
Wei Zhao ◽  
Huiwei Jiang ◽  
Zijing Ren ◽  
...  

Aloe-emodin widely possesses antibacterial, anti-inflammatory, antioxidant, antiviral, and anti-infectious properties. This study investigated the effect of ethyl 2-succinate-anthraquinone (Luhui derivative, LHD) on inflammation. In vitro, a THP-1 macrophage inflammation model, made by 100 ng/ml phorbol-12-myristate-13-acetate (PMA) and 1 μg/ml LPS for 24 h, was constructed. The LHD group (6.25 μmol/L, 12.5 μmol/L, 25 μmol/L, 50 μmol/L) had no effect on THP-1 cell activity, and the expression of IL-6 mRNA was down-regulated in a concentration-dependent manner, of which the 25 μmol/L group had the best inhibitory effect. The migration of THP-1 macrophages induced by LPS was decreased by the LHD. Moreover, the LHD suppressed ROS fluorescence expression by inhibiting MDA expression and increasing SOD activity. In vivo, we revealed that the LHD, in different doses (6.25 mg/kg, 12.5 mg/kg, 25 mg/kg, 50 mg/kg), has a protective effect on stress physiological responses by assessing the body temperature of mice. Interestingly, acute lung injury (e.g., the structure of the alveoli disappeared and capillaries in the alveolar wall were dilated and congested) and liver damage (e.g., hepatocyte swelling, neutrophil infiltration, and hepatocyte apoptosis) were obviously improved at the same condition. Furthermore, we initially confirmed that the LHD can down-regulate the expression of NLRP3, IL-1β, and caspase-1 proteins, thereby mediating the NLRP3 inflammasome signaling pathway to produce anti-inflammatory effects. In conclusion, our results indicate that the LHD exerts anti-inflammatory activity via regulating the NLRP3 signaling pathway, inhibition of oxidative stress, and THP-1 macrophage migration.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


Sign in / Sign up

Export Citation Format

Share Document