scholarly journals Zinc as a Biomarker of Cardiovascular Health

2021 ◽  
Vol 8 ◽  
Author(s):  
Marija Knez ◽  
Maria Glibetic

The importance of zinc (Zn) for cardiovascular health continuously gains recognition. As shown earlier, compromised Zn homeostasis and prolonged inflammation are common features in various cardiovascular diseases (CVDs). Similarly, Zn biochemistry alters several vascular processes, and Zn status is an important feature of cardiovascular health. Zn deficiency contributes to the development of CVDs; thus, Zn manipulations, including Zn supplementation, are beneficial for preventing and treating numerous cardiovascular (CV) disorders. Finally, additional long-term, well-designed studies, performed in various population groups, should be pursued to further clarify significant relationships between Zn and CVDs.

2008 ◽  
Vol 115 (6) ◽  
pp. 175-187 ◽  
Author(s):  
Robert D. Brook

Air pollution is a heterogeneous mixture of gases, liquids and PM (particulate matter). In the modern urban world, PM is principally derived from fossil fuel combustion with individual constituents varying in size from a few nanometres to 10 μm in diameter. In addition to the ambient concentration, the pollution source and chemical composition may play roles in determining the biological toxicity and subsequent health effects. Nevertheless, studies from across the world have consistently shown that both short- and long-term exposures to PM are associated with a host of cardiovascular diseases, including myocardial ischaemia and infarctions, heart failure, arrhythmias, strokes and increased cardiovascular mortality. Evidence from cellular/toxicological experiments, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. PM inhaled into the pulmonary tree may instigate remote cardiovascular health effects via three general pathways: instigation of systemic inflammation and/or oxidative stress, alterations in autonomic balance, and potentially by direct actions upon the vasculature of particle constituents capable of reaching the systemic circulation. In turn, these responses have been shown to trigger acute arterial vasoconstriction, endothelial dysfunction, arrhythmias and pro-coagulant/thrombotic actions. Finally, long-term exposure has been shown to enhance the chronic genesis of atherosclerosis. Although the risk to one individual at any single time point is small, given the prodigious number of people continuously exposed, PM air pollution imparts a tremendous burden to the global public health, ranking it as the 13th leading cause of morality (approx. 800000 annual deaths).


2019 ◽  
Vol 55 (No. 2) ◽  
pp. 45-54 ◽  
Author(s):  
Juan Daniel Lira-Morales ◽  
Nancy Varela-Bojórquez ◽  
Magaly Berenice Montoya-Rojo ◽  
J. Adriana Sañudo-Barajas

Soils with mineral deficiencies lead to nutritional imbalance in crops worldwide. Zinc (Zn) is a micronutrient that is fundamental for plant growth and development, being essential for the proper functioning of a range of enzymes and transcription factors. Zn transporters tightly regulate Zn homeostasis. Plants contain a large number of Zn-responsive genes that are specifically expressed under Zn deficiency to ensure the coordination of assimilatory pathways and meet the physiological requirements. This review brings together a range of studies that have been undertaken to investigate the effects of Zn status on the regulatory mechanisms involved in plant mineral nutrition. The ZIP (ZRT, IRT-like Protein) family is especially implicated in Zn transport and in the maintenance of cellular Zn homeostasis. Regulation of expression in relation to plant tissue, mineral concentration, and species has been determined for several ZIP family members. In the omic era, genomic and proteomic approaches have facilitated a rapid increase in our understanding of the roles of ZIP family members and their regulation, though significant knowledge gaps remain. A comprehensive understanding of ZIP proteins could lead to many potential molecular applications to improve crop management and food quality.  


2020 ◽  
Author(s):  
Felipe K. Ricachenevsky ◽  
Tracy Punshon ◽  
David E. Salt ◽  
Janette P. Fett ◽  
Mary Lou Guerinot

AbstractZinc (Zn) is a key micronutrient. In humans, Zn deficiency is a common nutritional disorder, and most people acquire dietary Zn from eating plants. In plants, Zn deficiency can decrease plant growth and yield. Understanding Zn homeostasis in plants can improve agriculture and human health. While root Zn transporters in plat model species have been characterized in detail, comparatively little is known about shoot processes controlling Zn concentrations and spatial distribution. Previous work showed that Zn hyperaccumulator species such as Arabidopsis halleri accumulate Zn and other metals in leaf trichomes. The model species Arabidopsis thaliana is a non-accumulating plant, and to date there is no systematic study regarding Zn accumulation in A. thaliana trichomes. Here, we used Synchrotron X-Ray Fluorescence mapping to show that Zn accumulates at the base of trichomes of A. thaliana, as had seen previously for hyperaccumulators. Using transgenic and natural accessions of A. thaliana that vary in bulk leaf Zn concentration, we demonstrated that higher leaf Zn increases total Zn found at the base of trichome cells. Furthermore, our data suggests that Zn accumulates in the trichome apoplast, likely associated with the cell wall. Our data indicates that Zn accumulation in trichomes is a function of the Zn status of the plant, and provides the basis for future studies on a genetically tractable plant species aiming at understanding the molecular steps involved in Zn spatial distribution in leaves.


2020 ◽  
Author(s):  
Grmay H. Lilay ◽  
Daniel P. Persson ◽  
Pedro Humberto Castro ◽  
Feixue Liao ◽  
Ross D. Alexander ◽  
...  

AbstractZinc (Zn) is an essential micronutrient for plants and animals because of its structural and catalytic roles in many proteins. Zn deficiency affects ca. two billion people, mainly those living on plant-based diets that rely on crops from Zn deficient soils. Plants maintain adequate Zn levels through tightly regulated Zn homeostasis mechanisms, involving Zn uptake, distribution and storage, but it was not known how they sense Zn status. We use in vitro and in planta approaches to show that the Arabidopsis thaliana F-group bZIP transcription factors bZIP19 and bZIP23, which are the central regulators of the Zn deficiency response, act as Zn sensors by binding Zn2+ ions to a Zn sensor motif (ZSM). Deletions or modifications of this ZSM disrupts Zn binding, leading to a constitutive transcriptional Zn deficiency response, which causes a significant increase in plant and seed Zn accumulation. Since the ZSM is highly conserved in F-bZIPs across land plants, the identification of the first plant Zn-sensor will promote new strategies to improve the Zn nutritional quality of plant-derived food and feed, and contribute to tackle the global Zn deficiency health problem.


CommonHealth ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 122-133
Author(s):  
Lindsay Kraus ◽  
Heather Murphy

The effect of air pollution on health is listed as a significant cause of death worldwide. Slightly over 3 million deaths per year are due to outdoor air pollution. Studies have shown that short term increases in exposure to particulate matter have increased the risk of cardiovascular diseases such as myocardial infarction, stroke, and heart failure. However, less is known about the longer term effects of air pollution on various cardiovascular diseases. The American Heart Association formally recognized PM2.5 as a significant cardiovascular risk factor in 2010. Since then, more prolonged term exposure to air pollution has been suggested to cause chronic cardiometabolic and cardiovascular problems. The effects of long term (>3 years) air pollution are significant, but not as much is known about how location affects this exposure. Associations with cardiovascular diseases and their risk factors are often increased in urban settings, which is attributed to a higher concentrations of outdoor air pollution, independent of ethnic groups and seasonal changes. Potential causes of long term air pollution concentrations in cities or metropolitan areas come from traffic exposure and traffic intensity. The Environmental Protection Agency and United Nations have suggested changes in air quality standards, implementation plans, and ways to reduce vehicle emissions specifically to improve human health and reduce the adverse effects of air pollution; however, more work still needs to be done. This review assesses the impact of the global long term (>3 years) air pollution exposure, specifically in urban environments on cardiovascular health and disease.


Author(s):  
Arie Nadler

This chapter reviews social psychological research on help giving and helping relations from the 1950s until today. The first section considers the conditions under which people are likely to help others, personality dispositions that characterize helpful individuals, and motivational and attributional antecedents of helpfulness. The second section looks at long-term consequences of help and examines help in the context of enduring and emotionally significant relationships. Research has shown that in the long run help can increase psychological and physical well-being for helpers but discourage self-reliance for recipients. The third section analyzes helping from intra- and intergroup perspectives, considering how its provision can contribute to helpers’ reputations within a group or promote the positive social identity of in-groups relative to out-groups. Help is thus conceptualized as a negotiation between the fundamental psychological needs for belongingness and independence. Theoretical and practical implications are discussed.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Christopher Menzel

Five strawberry (Fragaria × ananassa Duch.) cultivars were grown in Queensland, Australia to determine whether higher temperatures affect production. Transplants were planted on 29 April and data collected on growth, marketable yield, fruit weight and the incidence of small fruit less than 12 g until 28 October. Additional data were collected on fruit soluble solids content (SSC) and titratable acidity (TA) from 16 September to 28 October. Minimum temperatures were 2 °C to 4 °C higher than the long-term averages from 1965 to 1990. Changes in marketable yield followed a dose-logistic pattern (p < 0.001, R2s = 0.99). There was a strong negative relationship between fruit weight (marketable) and the average daily mean temperature in the four or seven weeks before harvest from 29 July to 28 October (p < 0.001, R2s = 0.90). There were no significant relationships between SSC and TA, and temperatures in the eight days before harvest from 16 September to 28 October (p > 0.05). The plants continued to produce a marketable crop towards the end of the season, but the fruit were small and more expensive to harvest. Higher temperatures in the future are likely to affect the economics of strawberry production in subtropical locations.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3428
Author(s):  
Chaojie Zhu ◽  
Junkai Ma ◽  
Zhiheng Ji ◽  
Jie Shen ◽  
Qiwen Wang

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, causing approximately 17.9 million deaths annually, an estimated 31% of all deaths, according to the WHO. CVDs are essentially rooted in atherosclerosis and are clinically classified into coronary heart disease, stroke and peripheral vascular disorders. Current clinical interventions include early diagnosis, the insertion of stents, and long-term preventive therapy. However, clinical diagnostic and therapeutic tools are subject to a number of limitations including, but not limited to, potential toxicity induced by contrast agents and unexpected bleeding caused by anti-platelet drugs. Nanomedicine has achieved great advancements in biomedical area. Among them, cell membrane coated nanoparticles, denoted as CMCNPs, have acquired enormous expectations due to their biomimetic properties. Such membrane coating technology not only helps avoid immune clearance, but also endows nanoparticles with diverse cellular and functional mimicry. In this review, we will describe the superiorities of CMCNPs in treating cardiovascular diseases and their potentials in optimizing current clinical managements.


2019 ◽  
Vol 27 (4) ◽  
pp. 24-31
Author(s):  
Kingsley Udeh ◽  
Candidus Nwakasi ◽  
John Fulton

The increasing incidence and prevalence of non-communicable diseases is a major global health concern. Cardiovascular diseases (CVDs) account for the highest percentage of deaths related to non-communicable diseases, and low and middle-income countries (LMIC) face the highest burden of CVDs. Understanding the knowledge and perception of CVDs and their risk factors in an LMIC such as Nigeria may play an important role in cardiovascular health promotion and improvement plans to reduce CVD-related deaths. A qualitative study was conducted using semi-structured interviews to gain an in-depth understanding of some personal and sociocultural views on CVDs and their risk factors. The participants were purposively sampled primary school teachers in South-Eastern Nigeria. Thematic analysis approach was used for data analysis. The study findings include knowledge of heart disease, perceived causes and risk factors of CVDs, spirituality, and the way forward. Overall, the knowledge of CVDs in the setting was found to be related to the psychosocial nature of the participants; the effectiveness of any intervention needs to take these factors into consideration. For example, health policies for CVD health education and awareness should be tailored to address some of the issues of belief, values, and religion, as mentioned in the study.


Sign in / Sign up

Export Citation Format

Share Document