scholarly journals Gut Microbiota and Their Role in Health and Metabolic Disease of Dairy Cow

2021 ◽  
Vol 8 ◽  
Author(s):  
Qingbiao Xu ◽  
Qinqin Qiao ◽  
Ya Gao ◽  
Jinxiu Hou ◽  
Mingyang Hu ◽  
...  

Ruminants are mostly herbivorous animals that employ rumen fermentation for the digestion of feed materials, including dairy cows. Ruminants consume plant fibre as their regular diet, but lack the machinery for their digestion. For this reason, ruminants maintain a symbiotic relation with microorganisms that are capable of producing enzymes to degrade plant polymers. Various species of microflora including bacteria, protozoa, fungi, archaea, and bacteriophages are hosted at distinct concentrations for accomplishing complete digestion. The ingested feed is digested at a defined stratum. The polysaccharic plant fibrils are degraded by cellulolytic bacteria, and the substrate formed is acted upon by other bacteria. This sequential degradative mechanism forms the base of complete digestion as well as harvesting energy from the ingested feed. The composition of microbiota readily gets tuned to the changes in the feed habits of the dairy cow. The overall energy production as well as digestion is decided by the intactness of the resident communal flora. Disturbances in the homogeneity gastrointestinal microflora has severe effects on the digestive system and various other organs. This disharmony in communal relationship also causes various metabolic disorders. The dominance of methanogens sometimes lead to bloating, and high sugar feed culminates in ruminal acidosis. Likewise, disruptive microfloral constitution also ignites reticuloperitonitis, ulcers, diarrhoea, etc. The role of symbiotic microflora in the occurrence and progress of a few important metabolic diseases are discussed in this review. Future studies in multiomics provides platform to determine the physiological and phenotypical upgradation of dairy cow for milk production.

2021 ◽  
Vol 22 (19) ◽  
pp. 10250
Author(s):  
Marzia Friuli ◽  
Barbara Eramo ◽  
Marta Valenza ◽  
Caterina Scuderi ◽  
Gustavo Provensi ◽  
...  

Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2018 ◽  
Vol 77 (3) ◽  
pp. 127-131
Author(s):  
Gérald Delelis ◽  
Véronique Christophe

Abstract. After experiencing an emotional event, people either seek out others’ presence (social affiliation) or avoid others’ presence (social isolation). The determinants and effects of social affiliation are now well-known, but social psychologists have not yet thoroughly studied social isolation. This study aims to ascertain which motives and corresponding regulation strategies participants report for social isolation following negative emotional events. A group of 96 participants retrieved from memory an actual negative event that led them to temporarily socially isolate themselves and freely listed up to 10 motives for social isolation. Through semantic categorization of the 423 motives reported by the participants, we found that “cognitive clarification” and “keeping one’s distance” – that is, the need for cognitive regulation and the refusal of socioaffective regulation, respectively – were the most commonly and quickly reported motives for social isolation. We discuss the findings in terms of ideas for future studies aimed at clarifying the role of social isolation in health situations.


Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


2020 ◽  
Vol 26 (22) ◽  
pp. 2620-2629 ◽  
Author(s):  
Rita Del Pinto ◽  
Davide Pietropaoli ◽  
Annalisa Monaco ◽  
Giovambattista Desideri ◽  
Claudio Ferri ◽  
...  

Systemic inflammation is a common denominator to a variety of cardiovascular (CV) and non-CV diseases and relative risk factors, including hypertension and its control, metabolic diseases, rheumatic disorders, and those affecting the gastrointestinal tract. Besides medications, a non-pharmacological approach encompassing lifestyle changes and other complementary measures is mentioned in several updated guidelines on the management of these conditions. We performed an updated narrative review on the mechanisms behind the systemic impact of inflammation and the role of non-pharmacological, complementary measures centered on lowering systemic phlogosis for preserving or restoring a good global health. The central role of genetics in shaping the immune response is discussed in conjunction with that of the microbiome, highlighting the interdependence and mutual influences between the human genome and microbial integrity, diversity, and functions. Several plausible strategies to modulate inflammation and restore balanced crosstalk between the human genome and the microbiome are then recapitulated, including dietary measures, active lifestyle, and other potential approaches to manipulate the resident microbial community. To date, evidence from high-quality human studies is sparse to allow the unconditioned inclusion of understudied, though plausible solutions against inflammation into public health strategies for global wellness. This gap claims further focused, well-designed research targeted at unravelling the mechanisms behind future personalized medicine.


2019 ◽  
Vol 25 (22) ◽  
pp. 2467-2473 ◽  
Author(s):  
Enrique Reyes-Muñoz ◽  
Federica Di Guardo ◽  
Michal Ciebiera ◽  
Ilker Kahramanoglu ◽  
Thozhukat Sathyapalan ◽  
...  

Background: Gestational Diabetes Mellitus (GDM), defined as glucose intolerance with onset or first recognition during pregnancy, represents one of the most common maternal-fetal complications during pregnancy and it is associated with poor perinatal outcomes. To date, GDM is a rising condition over the last decades coinciding with the ongoing epidemic of obesity and Type 2 Diabetes Mellitus (T2DM). Objective: The aim of this review is to discuss the role of diet and nutritional interventions in preventing GDM with the explanation of the special role of myo-inositol (MI) in this matter. Methods: We performed an overview of the most recent literature data on the subject with particular attention to the effectiveness of diet and nutritional interventions in the prevention of GDM with the special role of MI. Results: Nutritional intervention and physical activity before and during pregnancy are mandatory in women affected by GDM. Moreover, the availability of insulin-sensitizers such as different forms of inositol has dramatically changed the scenario, allowing the treatment of several metabolic diseases, such as those related to glucose dysbalance. Although the optimal dose, frequency, and form of MI administration need to be further investigated, diet supplementation with MI appears to be an attractive alternative for the GDM prevention as well as for the reduction of GDM-related complications. Conclusion: More studies should be conducted to prove the most effective nutritional intervention in GDM. Regarding the potential effectiveness of MI, further evidence in multicenter, randomized controlled trials is needed to draw firm conclusions.


2020 ◽  
Vol 21 (5) ◽  
pp. 330-338
Author(s):  
Luming Wu ◽  
Yuan Ding ◽  
Shiqiang Han ◽  
Yiqing Wang

Background: Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. Objective: The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. Methods: We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. Conclusion: : This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.


2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


Author(s):  
Giuseppe Lisco ◽  
Vito A. Giagulli ◽  
Giovanni De Pergola ◽  
Anna De Tullio ◽  
Edoardo Guastamacchia ◽  
...  

Background: The novel pandemic of Coronavirus disease 2019 (COVID-19) has becoming a public health issue since March 2020 considering that more than 30 million people were found to be infected worldwide. Particularly, recent evidences suggested that men may be considered as at higher risk of poor prognosis or death once the infection occurred and concerns surfaced in regard of the risk of a possible testicular injury due to SARS-CoV-2 infection. Results: Several data support the existence of a bivalent role of testosterone (T) in driving poor prognosis in patients with COVID-19. On one hand, this is attributable to the fact that T may facilitate SARS-CoV-2 entry in human cells by means of an enhanced expression of transmembrane serine-protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2). At the same time, younger man with normal testicular function compared to women of similar age are prone to develop a blunted immune response against SARS-CoV-2, being exposed to less viral clearance and more viral shedding and systemic spread of the disease. Conversely, low levels of serum T observed in hypogonadal men predispose them to a greater background systemic inflammation, cardiovascular and metabolic diseases, and immune system dysfunction, hence driving harmful consequences once SARS-CoV-2 infection occurred. Finally, SARS-CoV-2, as a systemic disease, may also affect testicles with possible concerns for current and future testicular efficiency. Preliminary data suggested that SARS-CoV-2 genome is not normally found in gonads and gametes, therefore sex transmission could be excluded as a possible way to spread the COVID-19. Conclusion: Most data support a role of T as a bivalent risk factor for poor prognosis (high/normal in younger; lower in elderly) in COVID-19. However, the impact of medical treatment aimed to modify T homeostasis for improving the prognosis of affected patients is unknown in this clinical setting. In addition, testicular damage may be a harmful consequence of the infection even in case it occurred asymptomatically but no long-term evidences are currently available to confirm and quantify this phenomenon. Different authors excluded the presence of SARS-CoV-2 in sperm and oocytes, thus limiting worries about both a potential sexual and gamete-to-embryos transmission of COVID-19. Despite these evidence, long-term and well-designed studies are needed to clarify these issues.


Sign in / Sign up

Export Citation Format

Share Document