scholarly journals The Application of Artificial Intelligence and Machine Learning in Pituitary Adenomas

2021 ◽  
Vol 11 ◽  
Author(s):  
Congxin Dai ◽  
Bowen Sun ◽  
Renzhi Wang ◽  
Jun Kang

Pituitary adenomas (PAs) are a group of tumors with complex and heterogeneous clinical manifestations. Early accurate diagnosis, individualized management, and precise prediction of the treatment response and prognosis of patients with PA are urgently needed. Artificial intelligence (AI) and machine learning (ML) have garnered increasing attention to quantitatively analyze complex medical data to improve individualized care for patients with PAs. Therefore, we critically examined the current use of AI and ML in the management of patients with PAs, and we propose improvements for future uses of AI and ML in patients with PAs. AI and ML can automatically extract many quantitative features based on massive medical data; moreover, related diagnosis and prediction models can be developed through quantitative analysis. Previous studies have suggested that AI and ML have wide applications in early accurate diagnosis; individualized treatment; predicting the response to treatments, including surgery, medications, and radiotherapy; and predicting the outcomes of patients with PAs. In addition, facial imaging-based AI and ML, pathological picture-based AI and ML, and surgical microscopic video-based AI and ML have also been reported to be useful in assisting the management of patients with PAs. In conclusion, the current use of AI and ML models has the potential to assist doctors and patients in making crucial surgical decisions by providing an accurate diagnosis, response to treatment, and prognosis of PAs. These AI and ML models can improve the quality and safety of medical services for patients with PAs and reduce the complication rates of neurosurgery. Further work is needed to obtain more reliable algorithms with high accuracy, sensitivity, and specificity for the management of PA patients.

2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


Author(s):  
Anil Babu Payedimarri ◽  
Diego Concina ◽  
Luigi Portinale ◽  
Massimo Canonico ◽  
Deborah Seys ◽  
...  

Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health interventions aimed to flatten the epidemiological curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also showed positive impact, whereas social distancing should be considered to be effective only in combination with other interventions including the closure of schools and commercial activities and the limitation of public transportation. Our findings also showed that all the interventions should be initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we concluded that AI and ML could be of help for policy makers to define the strategies for containing the COVID-19 pandemic.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4740
Author(s):  
Fabiano Bini ◽  
Andrada Pica ◽  
Laura Azzimonti ◽  
Alessandro Giusti ◽  
Lorenzo Ruinelli ◽  
...  

Artificial intelligence (AI) uses mathematical algorithms to perform tasks that require human cognitive abilities. AI-based methodologies, e.g., machine learning and deep learning, as well as the recently developed research field of radiomics have noticeable potential to transform medical diagnostics. AI-based techniques applied to medical imaging allow to detect biological abnormalities, to diagnostic neoplasms or to predict the response to treatment. Nonetheless, the diagnostic accuracy of these methods is still a matter of debate. In this article, we first illustrate the key concepts and workflow characteristics of machine learning, deep learning and radiomics. We outline considerations regarding data input requirements, differences among these methodologies and their limitations. Subsequently, a concise overview is presented regarding the application of AI methods to the evaluation of thyroid images. We developed a critical discussion concerning limits and open challenges that should be addressed before the translation of AI techniques to the broad clinical use. Clarification of the pitfalls of AI-based techniques results crucial in order to ensure the optimal application for each patient.


2019 ◽  
Vol 8 (2) ◽  
pp. 4499-4504

Heart diseases are responsible for the greatest number of deaths all over the world. These diseases are usually not detected in early stages as the cost of medical diagnostics is not affordable by a majority of the people. Research has shown that machine learning methods have a great capability to extract valuable information from the medical data. This information is used to build the prediction models which provide cost effective technological aid for a medical practitioner to detect the heart disease in early stages. However, the presence of some irrelevant and redundant features in medical data deteriorates the competence of the prediction system. This research was aimed to improve the accuracy of the existing methods by removing such features. In this study, brute force-based algorithm of feature selection was used to determine relevant significant features. After experimenting rigorously with 7528 possible combinations of features and 5 machine learning algorithms, 8 important features were identified. A prediction model was developed using these significant features. Accuracy of this model is experimentally calculated to be 86.4%which is higher than the results of existing studies. The prediction model proposed in this study shall help in predicting heart disease efficiently.


2019 ◽  
Vol 18 ◽  
pp. 153601211986907 ◽  
Author(s):  
Ian R. Duffy ◽  
Amanda J. Boyle ◽  
Neil Vasdev

Machine learning (ML) algorithms have found increasing utility in the medical imaging field and numerous applications in the analysis of digital biomarkers within positron emission tomography (PET) imaging have emerged. Interest in the use of artificial intelligence in PET imaging for the study of neurodegenerative diseases and oncology stems from the potential for such techniques to streamline decision support for physicians providing early and accurate diagnosis and allowing personalized treatment regimens. In this review, the use of ML to improve PET image acquisition and reconstruction is presented, along with an overview of its applications in the analysis of PET images for the study of Alzheimer's disease and oncology.


2020 ◽  
Author(s):  
Joon Lee

UNSTRUCTURED In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not yet occurred. Interestingly, the performance of machine learning–based patient outcome prediction models has rarely been compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive abilities of clinicians.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi137-vi137
Author(s):  
Niklas Tillmanns ◽  
Avery Lum ◽  
W R Brim ◽  
Harry Subramanian ◽  
Ming Lin ◽  
...  

Abstract PURPOSE Generalizability, reproducibility and objectivity are critical elements that need to be considered when translating machine learning models into clinical practice. While a large body of literature has been published on machine learning methods for segmentation of brain tumors, a systematic evaluation of paper quality and reproducibility has not been done. We investigated the use of “Transparent Reporting of studies on prediction models for Individual Prognosis Or Diagnosis” (TRIPOD) items, among papers published in this relatively new and growing field. METHODS According to PRISMA a literature review was performed on four databases, Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL) and Web of science core-collection first in October 2020 and a second time in February 2021. Keywords and controlled vocabulary included artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. The publications were assessed in order to the TRIPOD items. RESULTS 37 publications from our database search were screened in TRIPOD and yielded an average score of 12.08 with the maximum score being 16 and the minimum score 7. The best scoring item was interpretation (item 19) where all papers scored a point. The lowest scoring items were the title, the abstract, risk groups and the model performance (items number 1, 2, 11 and 16), where no paper scored a point. Less than 1% of the papers discussed the problem of missing data (item 9) and the funding of research (item 22). CONCLUSION TRIPOD analysis showed that a majority of the papers do not score high on critical elements that allow reproducibility, translation, and objectivity of research. An average score of 12.08 (40%) indicates that the publications usually achieve a relatively low score. The categories that were consistently poorly described include the ML network description, measuring model performance, title details and inclusion of information into the abstract.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan Xu ◽  
Nan-Nan Sun ◽  
Hai-Nv Gao ◽  
Zhi-Yuan Chen ◽  
Ya Yang ◽  
...  

AbstractCOVID-19 is a newly emerging infectious disease, which is generally susceptible to human beings and has caused huge losses to people's health. Acute respiratory distress syndrome (ARDS) is one of the common clinical manifestations of severe COVID-19 and it is also responsible for the current shortage of ventilators worldwide. This study aims to analyze the clinical characteristics of COVID-19 ARDS patients and establish a diagnostic system based on artificial intelligence (AI) method to predict the probability of ARDS in COVID-19 patients. We collected clinical data of 659 COVID-19 patients from 11 regions in China. The clinical characteristics of the ARDS group and no-ARDS group of COVID-19 patients were elaborately compared and both traditional machine learning algorithms and deep learning-based method were used to build the prediction models. Results indicated that the median age of ARDS patients was 56.5 years old, which was significantly older than those with non-ARDS by 7.5 years. Male and patients with BMI > 25 were more likely to develop ARDS. The clinical features of ARDS patients included cough (80.3%), polypnea (59.2%), lung consolidation (53.9%), secondary bacterial infection (30.3%), and comorbidities such as hypertension (48.7%). Abnormal biochemical indicators such as lymphocyte count, CK, NLR, AST, LDH, and CRP were all strongly related to the aggravation of ARDS. Furthermore, through various AI methods for modeling and prediction effect evaluation based on the above risk factors, decision tree achieved the best AUC, accuracy, sensitivity and specificity in identifying the mild patients who were easy to develop ARDS, which undoubtedly helped to deliver proper care and optimize use of limited resources.


2022 ◽  
Vol 8 ◽  
Author(s):  
Anastasia Fotaki ◽  
Esther Puyol-Antón ◽  
Amedeo Chiribiri ◽  
René Botnar ◽  
Kuberan Pushparajah ◽  
...  

Artificial intelligence (AI) refers to the area of knowledge that develops computerised models to perform tasks that typically require human intelligence. These algorithms are programmed to learn and identify patterns from “training data,” that can be subsequently applied to new datasets, without being explicitly programmed to do so. AI is revolutionising the field of medical imaging and in particular of Cardiovascular Magnetic Resonance (CMR) by providing deep learning solutions for image acquisition, reconstruction and analysis, ultimately supporting the clinical decision making. Numerous methods have been developed over recent years to enhance and expedite CMR data acquisition, image reconstruction, post-processing and analysis; along with the development of promising AI-based biomarkers for a wide spectrum of cardiac conditions. The exponential rise in the availability and complexity of CMR data has fostered the development of different AI models. Integration in clinical routine in a meaningful way remains a challenge. Currently, innovations in this field are still mostly presented in proof-of-concept studies with emphasis on the engineering solutions; often recruiting small patient cohorts or relying on standardised databases such as Multi-ethnic Study on atherosclerosis (MESA), UK Biobank and others. The wider incorporation of clinically valid endpoints such as symptoms, survival, need and response to treatment remains to be seen. This review briefly summarises the current principles of AI employed in CMR and explores the relevant prospective observational studies in cardiology patient cohorts. It provides an overview of clinical studies employing undersampled reconstruction techniques to speed up the scan encompassing cine imaging, whole-heart imaging, multi-parametric mapping and magnetic resonance fingerprinting along with the clinical utility of AI applications in image post-processing, and analysis. Specific focus is given to studies that have incorporated CMR-derived prediction models for prognostication in cardiac disease. It also discusses current limitations and proposes potential developments to enable multi-disciplinary collaboration for improved evidence-based medicine. AI is an extremely promising field and the timely integration of clinician's input in the ingenious technical investigator's paradigm holds promise for a bright future in the medical field.


10.2196/19918 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e19918
Author(s):  
Joon Lee

In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not yet occurred. Interestingly, the performance of machine learning–based patient outcome prediction models has rarely been compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive abilities of clinicians.


Sign in / Sign up

Export Citation Format

Share Document