scholarly journals Development, Optimization and Evaluation of 2-Methoxy-Estradiol Loaded Nanocarrier for Prostate Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Nabil A. Alhakamy ◽  
Osama A. Ahmed ◽  
Usama A. Fahmy ◽  
Hani Z. Asfour ◽  
Adel F. Alghaith ◽  
...  

The therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, toward the improvement of the anticancer potential of 2-methoxy estradiol (2 ME) on prostate cancer, the drug was entrapped into the hydrophobic micelles core formulated with Phospholipon 90G and d-α-tocopheryl polyethylene glycol succinate (TPGS). Optimization of the formulation was done by Box-Behnken statistical design using Statgraphics software to standardize percentages of TPGS and phospholipid to obtain the smallest particle size. The optimized formulation was found to be spherical with nanometer size of 152 ± 5.2 nm, and low PDI (0.234). The entrapment efficiency of the micelles was 88.67 ± 3.21% with >93% release of 2 ME within 24 h. There was a 16-fold increase in apoptosis and an 8-fold increase in necrosis of the PC-3 cells when incubated with 2 ME micellar delivery compared to control cells (2.8 ± 0.2%). This increased apoptosis was further correlated with increased BAX expression (11.6 ± 0.7) and decreased BCL-2 expression (0.29 ± 0.05) in 2 ME micelles treated cells when compared to the control group. Further, loss of mitochondrial membrane potential (∼50-fold) by the drug-loaded micelles and free drug compared to control cells was found to be due to the generation of ROS. Findings on cell cycle analysis revealed the significant arrest of the G2-M phase of the PC-3 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed the maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-9, p53, and NO, with downregulation of TNF-α, NF-κβ, and inflammatory mediators of the PC-3 cells established the superiority of the micellar approach against prostate cancer. In summary, the acquired results highlighted the potentiality of the 2 ME-micellar delivery tool for controlling the growth of prostate cancer cells for improved efficacy.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3260
Author(s):  
Yu-Hsiang Lin ◽  
Chi-Chung Wang ◽  
Ying-Hung Lin ◽  
Bing-Huei Chen

Anti-cancer activity of catechin nanoemulsions prepared from Oolong tea leaf waste was studied on prostate cancer cells DU-145 and DU-145-induced tumors in mice. Catechin nanoemulsions composed of lecithin, Tween-80 and water in an appropriate proportion was prepared with high stability, particle size of 11.3 nm, zeta potential of −67.2 mV and encapsulation efficiency of 83.4%. Catechin nanoemulsions were more effective than extracts in inhibiting DU-145 cell growth, with the IC50 being 13.52 and 214.6 μg/mL, respectively, after 48 h incubation. Furthermore, both catechin nanoemulsions and extracts could raise caspase-8, caspase-9 and caspase-3 activities for DU-145 cell apoptosis, arresting the cell cycle at S and G2/M phases. Compared to control, catechin nanoemulsion at 20 μg/mL and paclitaxel at 10 μg/mL were the most effective in reducing tumor volume by 41.3% and 52.5% and tumor weight by 77.5% and 90.6% in mice, respectively, through a decrease in EGF and VEGF levels in serum.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3904-3904
Author(s):  
Soniya Nityanand ◽  
Naresh Kumar Tripathy ◽  
Chandra Prakash Chaturvedi ◽  
Ekta Minocha ◽  
Akhilesh Sharma ◽  
...  

Abstract Mesenchymal stem cells (MSC) are an important component of the hematopoietic niche in the bone marrow (BM) and regulate hematopoiesis by producing a variety of cytokines and growth factors. In aplastic anemia (AA), most of the studies have attributed the reduced hematopoiesis to a defect in hematopoietic stem cells (HSC) and limited data is available on the role of BM-MSC in AA. Therefore, the objective of the present study was to evaluate the expression of hematopoiesis regulatory genes, viz. granulocyte colony stimulating factor (G-CSF), stromal cell derived factor (SDF-1), stem cell factor (SCF), tumor necrosis factor-alpha (TNF-α) macrophage inflammatory protein-1 alpha (MIP-1α) and transforming growth factor-beta (TGF-β) in BM-MSC of patients with AA and compare it with BM-MSC of control group. Twenty patients of idiopathic acquired AA with a median age of 25.5 years (range: 12-64 years) were included in the study. The control group consisted of 10 healthy volunteers and 10 patients with iron deficiency anemia or immune thrombocytopenic purpura. The median age of the control group was 20 years (range: 11-62 years). The BM-MSC were isolated and cultured as per protocol standardized and previously published by us. Third passage cells were used in the study. The MSC were characterized both by their phenotypic markers and by their ability to differentiate into adipogenic and osteogenic lineages. The expression of hematopoiesis regulatory genes was studied by real-time quantitative polymerase chain reaction (qRT-PCR). The GAPDH was used as the housekeeping gene to normalize the transcript levels and the fold change in the gene expression was calculated by 2-ΔΔCtmethod. The BM-MSC of AA patients and controls had similar morphology and expression of mesenchymal markers CD73, CD105, CD90 and CD166, absence of expression of hematopoietic markers CD13, CD34 and CD45 and of HLA-DR. However, the BM-MSC of AA patients exhibited a higher adipogenic and a lower osteogenic differentiation in comparison to those of controls. Further, the BM-MSC of AA patients in comparison to those of control group, had a higher expression of G-CSF (fold increase: 1.99; p<0.0001), SDF-1 (fold increase: 1.37; p<0.01) and TNF-α (fold increase: 10.68; p<0.0001) and a very low expression of MIP-1α (fold decease: 50.0; p<0.0001) transcripts. The expression of SCF and TGF-β transcripts were comparable in the BM-MSC of both the groups (p>0.05). Though AA patients have been shown to have elevated levels of G-CSF in the peripheral blood and BM but there is only one previous report on G-CSF gene expression in BM-MSC of AA, in which a higher expression was observed and thus corroborates with our data. There is no data available on SDF-1 levels in the peripheral blood and bone marrow of AA patients. We have observed higher gene expression of SDF-1 in BM-MSC of AA patients. The higher expression of G-CSF and SDF-1, pro-hematopoietic factors, in AA may be due to a compensatory response of the BM stroma to boost the hematopoiesis. Our observation of higher TNF-α gene expression in BM-MSC corroborates with previous reports on higher levels of this anti-hematopoietic cytokine in the BM plasma of patients with AA and indicates that MSC could contribute to the increase in the TNF-α level in the BM of AA patients. A conspicuous observation of our study was a markedly decreased expression of MIP-1α gene in BM-MSC of AA and to the best of our knowledge this is the first report on MIP-1α in AA. MIP-1α is a chemokine which has been shown to inhibit proliferation of HSC in vitro and thus may help to maintain HSC in an undifferentiated state. Furthermore, MIP-1α has also been reported to mediate interaction of HSC with stromal cells in BM and may have a role in supporting hematopoiesis. Its precise role in AA needs to be studied further. We are currently studying the levels of these cytokines/growth factors in the BM plasma of the same cohort of AA patients and controls and the data will be presented. Our study thus shows that BM-MSC of AA patients have altered expression of hematopoiesis regulatory genes which may contribute to the pathobiology of the disease. Disclosures Nityanand: Sanjay Gandhi Post Graduate Institute of Medical Sciences: Employment, Research Funding. Tripathy:Sanjay Gandhi Post Graduate Institute of Medical Sciences: Employment. Chaturvedi:Dept of Biotechnology, Govt of India: Employment. Minocha:Dept of Science and Technology, Govt of India: Other: PhD scholarship. Sharma:Sanjay Gandhi Post Graduate Institute of Medical Sciences: Employment. Rahman:SGPGI, Lucknow , India: Employment, Research Funding.


2021 ◽  
Author(s):  
Jiang Yiyan ◽  
Wang Keke ◽  
Lou Zhefeng ◽  
Hong Dan ◽  
Min Tao

Abstract Background: Gastric cancer is one of the most common malignancy with high mortality rate in the world. Systemic chemotherapy is thought to be an important treatment. However, due to the unsatisfactory efficiency and obvious side effects, it is urgent to detect new therapy strategy for gastric cancer. This study was aimed to investigate the effects and mechanisms of ω-3 polyunsaturated acids (PUFAs) combined with 5-FU on the growth of gastric cancer cells in nude mice. Methods: BALB/C nude mice were injected subcutaneously with SGC7901 gastric cancer cells to establish a tumor-bearing mouse model. The tumor growth in vivo was observed. Morphological of tumor specimens was observed by HE staining. The mRNA levels of RhoA, RhoC and ROCK1 in tumor tissues were detected by qPCR, and their protein levels were detected by immunofluorescence and Western Blot. Meanwhile, apoptosis –related proteins were also determined by Western Blot.Results: Compared with the NC control group, the tumor volume and weight in ω-3 PUFAs and 5-Fu groups were insignificantly lower, but significantly lower in the combination group. Compared with the abundant blood supply in the NC group, HE staining showed multifocal tumor necrosis in the three intervention groups, and this change was the most prominent in the combination group. And qPCR results showed that the mRNA levels of RhoA in the combination groups were significantly lower than this in the other groups. Immunofluorescence showed that the level of RhoA protein in the three intervention groups decline in varying degrees, especially in the combination group. Western Blot showed that the protein level of RhoA in the three intervention groups were significantly lower than those in the NC control group, especially in the combination group. Meanwhile, the protein level of ROCK1 in both 5-FU group and the combination group were significantly lower, especially in the combination group. Compared with the control group, the levels of Bcl-2 and Caspase-9 decreased in the combination group, the level of cleaved Parp was increased at the same time.Conclusion: ω-3 PUFAs combined with 5-FU may inhibit tumor growth through the Rho/ROCK pathway and promote apoptosis by down-regulating the levels of Bcl-2 and Caspase-9 and induce the increase of cleaved Parp level.


The Prostate ◽  
2009 ◽  
Vol 69 (13) ◽  
pp. 1435-1447 ◽  
Author(s):  
Myoung H. Kim ◽  
Alena Z. Minton ◽  
Vikas Agrawal

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanshen Mao ◽  
Wenfeng Li ◽  
Bao Hua ◽  
Xin Gu ◽  
Weixin Pan ◽  
...  

ELK3, an ETS domain-containing transcription factor, participates in various physiological and pathological processes including cell proliferation, migration, angiogenesis, and malignant progression. However, the role of ELK3 in prostate cancer cells and its mechanism are not fully understood. The contribution of ELK3 to prostate cancer progression was investigated in the present study. We showed that silencing of ELK3 by siRNA in prostate cancer cell DU145 induced S-M phase arrest, promoted apoptosis, inhibited cell proliferation and migration in vitro, and suppressed xenograft growth in mice in vivo. In accordance with its ability to arrest cells in S-M phase, the expression of cyclin A and cyclin B was downregulated. In addition, the expression of p53 was upregulated following ELK3 knockdown, while that of antiapoptotic Bcl-2 was decreased. The migration inhibition may partly due to upregulation of SERPINE1 (a serine protease inhibitor) followed ELK3 knockdown. Consistently, downregulation of SERPINE1 resulted in a modest elimination of migration inhibition resulted from ELK3 knockdown. Furthermore, we found that the AKT signaling was activated in ELK3 knockdown cells, and treatment these cells with AKT inhibitor attenuated SERPINE1 expression induced by ELK3 silencing, suggesting that activation of AKT pathway may be one of the reasons for upregulation of SERPINE1 after ELK3 knockdown. In conclusion, modulation of ELK3 expression may control the progression of prostate cancer partly by regulating cell growth, apoptosis, and migration.


2020 ◽  
Vol 19 ◽  
pp. 153303382094806
Author(s):  
Guangxing Tan ◽  
Lin Jiang ◽  
Gangqin Li ◽  
Kuan Bai

Objective: To explore the effect and the related mechanism of STAT3 inhibitor AG-490 on inhibiting the proliferation of prostate cancer cells. Methods: PC3 cells and DU145 cells were cultured stably and treated with AG-490 to detect the changes in the activity of PC3 cells and DU145 cells. Thirty 6-8 weeks male BALB/c nude mouse were randomly divided into a control group, a DMSO group, and an AG-490 group to detect differences in various indexes . Results: The overexpression of miR-503-5p depends on the activation of STAT3. After treatment with AG-490, The proliferation and invasion of PC3 cells and DU145 cells and the expression of miR-503-5p were all reduced. Luciferase reporter assay demonstrated that the target proteins of miR-503-5p include PDCD4, TIMP-3, and PTEN. After treatment with AG-490, the expression of PDCD4, TIMP-3, and PTEN in cells was significantly up-regulated. IL-6-induced overexpression of miR-503-5p and restored the expression of STAT3, demonstrating the correlation between STAT3 and miR-503-5p. AG-490 can inhibit tumor growth and induce tumor cell apoptosis in the PC3 BALB/c nude mouse xenograft model. Western blotting and immunohistochemical staining showed that the expression levels of STAT3, Ki67, Bcl-2 and MMP-2 in the AG-490 group were significantly reduced, and the expression of PDCD4, TIMP-3 and PTEN increased. Conclusion: AG-490 can inhibit the growth of prostate cancer cells in a miR-503-5p-dependent manner by targeting STAT3. AG-490 is expected to become a new candidate drug for the treatment of prostate cancer.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61132 ◽  
Author(s):  
Jie Shi ◽  
Jing Chen ◽  
Nawal Serradji ◽  
Ximing Xu ◽  
Heng Zhou ◽  
...  

2010 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Chun Hei Antonio Cheung ◽  
Xueying Sun ◽  
Jagat R Kanwar ◽  
Ji-Zhong Bai ◽  
LiTing Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document