scholarly journals Liquid Chromatograph-Mass Spectrometry-Based Non-targeted Metabolomics Discovery of Potential Endogenous Biomarkers Associated With Prostatitis Rats to Reveal the Effects of Magnoflorine

2021 ◽  
Vol 12 ◽  
Author(s):  
Yin Yuan ◽  
Fei-Xue Dong ◽  
Xu Liu ◽  
Hong-Bin Xiao ◽  
Zhong-Guang Zhou

Magnoflorine (Mag) has multiple pharmacological activities for the prevention and treatment of prostatitis. However, its molecular mechanisms andpharmacological targets are not clear. In this study, the ultra-performance liquid tandem mass spectrometry-based metabolomics method was used to clarify the intervention of Mag against prostatitis and the biological mechanism. A total of 25 biomarkers associated with the prostatitis model were identified by metabolomics, and a number of metabolic pathways closely related to the model were obtained by MetPA analysis. After given Mag treatment, the results of each indicator were shown that Mag alkaloid could inhibit the development of prostatitis effectively. We found that Mag had regulative effects on potential biomarkers of prostatitis model, which can regulate them to the control group. Our results indicated that alkaloids have an effective intervention therapy for prostatitis, and five types of metabolic pathways closely related to prostatitis model were obtained, including phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, tyrosine metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism. This study has provided the basic experimental data for the development of Mag in the prevention and treatment of prostatitis.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7181
Author(s):  
Jingtong Zhao ◽  
Meng Liu ◽  
Tongfei Shi ◽  
Mohan Gao ◽  
Yuqian Lv ◽  
...  

Osteoarthritis is a common multifactorial chronic disease that occurs in articular cartilage, subchondral bone, and periarticular tissue. The pathogenesis of OA is still unclear. To investigate the differences in serum metabolites between OA and the control group, liquid chromatography/mass spectrometry (LC/MS)-based metabolomics was used. To reveal the pathogenesis of OA, 12 SD male rats were randomly divided into control and OA groups using collagenase to induce OA for modeling, and serum was collected 7 days after modeling for testing. The OA group was distinguished from the control group by principal component analysis and orthogonal partial least squares-discriminant analysis, and six biomarkers were finally identified. These biomarkers were metabolized through tryptophan metabolism, glutamate metabolism, nitrogen metabolism, spermidine metabolism, and fatty acid metabolism pathways. The study identified metabolites that may be altered in OA, suggesting a role in OA through relevant metabolic pathways. Metabolomics, as an important tool for studying disease mechanisms, provides useful information for studying the metabolic mechanisms of OA.


Author(s):  
Qiumei Liu ◽  
Siyu Tang ◽  
Xiaohui Meng ◽  
Han Zhu ◽  
Yiyong Zhu ◽  
...  

Trichoderma is a genus of filamentous fungi that play notable roles in stimulating plant growth after colonizing the root surface. However, the key proteins and molecular mechanisms governing this stimulation have not been completely elucidated. In this study, Trichoderma guizhouense NJAU 4742 was investigated in a hydroponic culture system after interacting with cucumber roots. The total proteins of the fungus were characterized, and the key metabolic pathways along with related genes were analyzed through proteomic and transcriptomic analyses. The roles played by the regulated proteins during the interaction between plants and NJAU 4742 were further examined. The intracellular/extracellular proteins from NJAU 4742 and extracellular proteins from the cucumbers were quantified, and the high-abundance proteins were determined which primarily involved in the shikimate pathway (tryptophan, tyrosine, and phenylalanine metabolism, auxin biosynthesis and secondary metabolite synthesis). Moreover, 15N-KNO3 labeling analysis indicated that NJAU 4742 had a strong ability to convert nitrogenous amino acids, nitrate, nitrile and amines into ammonia. The auxin synthesis and ammonification metabolism pathways of NJAU 4742 significantly contribute to plant growth. The results of this study demonstrated the crucial metabolic pathways involved in the interactions between Trichoderma and plants.


2018 ◽  
Author(s):  
Stacy A. Malaker ◽  
Kayvon Pedram ◽  
Michael J. Ferracane ◽  
Elliot C. Woods ◽  
Jessica Kramer ◽  
...  

<div> <div> <div> <p>Mucins are a class of highly O-glycosylated proteins that are ubiquitously expressed on cellular surfaces and are important for human health, especially in the context of carcinomas. However, the molecular mechanisms by which aberrant mucin structures lead to tumor progression and immune evasion have been slow to come to light, in part because methods for selective mucin degradation are lacking. Here we employ high resolution mass spectrometry, polymer synthesis, and computational peptide docking to demonstrate that a bacterial protease, called StcE, cleaves mucin domains by recognizing a discrete peptide-, glycan-, and secondary structure- based motif. We exploited StcE’s unique properties to map glycosylation sites and structures of purified and recombinant human mucins by mass spectrometry. As well, we found that StcE will digest cancer-associated mucins from cultured cells and from ovarian cancer patient-derived ascites fluid. Finally, using StcE we discovered that Siglec-7, a glyco-immune checkpoint receptor, specifically binds sialomucins as biological ligands, whereas the related Siglec-9 receptor does not. Mucin-specific proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of glycoprotein structure and function and for deorphanizing mucin-binding receptors. </p> </div> </div> </div>


2019 ◽  
Vol 72 (5) ◽  
pp. 779-783
Author(s):  
Victor A. Ognev ◽  
Anna A. Podpriadova ◽  
Anna V. Lisova

Introduction:The high level of morbidity and mortality from cardiovascular disease is largely due toinsufficient influence on the main risk factors that contribute to the development of myocardial infarction.Therefore, a detailed study and assessment of risk factors is among the most important problems of medical and social importance. The aim: To study and evaluate the impact of biological, social and hygienic, social and economic, psychological, natural and climatic risk factors on the development of myocardial infarction. Materials and methods: A sociological survey was conducted in 500 people aged 34 to 85. They were divided into two groups. The main group consisted of 310 patients with myocardial infarction. The control group consisted of 190 practically healthy people, identical by age, gender and other parameters, without diseases of the cardiovascular system. Results: It was defined that 30 factors have a significant impact on the development of myocardial infarction.Data analysis revealed that the leading risk factors for myocardial infarction were biological and socio-hygienic. The main biological factors were: hypertension and hypercholesterolemia. The man socio-hygienic factor was smoking. Conclusions: Identification of risk factors provides new opportunities for the development of more effective approaches for the prevention and treatment of myocardial infarction.


2020 ◽  
Vol 21 (6) ◽  
pp. 480-487
Author(s):  
Med A. Smach ◽  
Jawhar Hafsa ◽  
Bassem Charfeddine ◽  
Hedi Dridi ◽  
Khalifa Limem ◽  
...  

Background: Arthrophytum scoparium (Pomel) Iljin (Amaranthaceae family) has been widely used in traditional Tunisian medicine to treat many disorders such as migraine, headache, and neurological disorders. This study investigates the effect of Arthrophytum scoparium Aqueous Extract (ASAE) on cognitive impairments and oxidative injury induced by galactose (10%) in a mouse model. Materials and Methods: The mice were divided randomly into 4 experimental groups, including the control group (saline water 9 ‰), Galactose group, Scop group (300 mg/kg/d), and Scop+Gal group (300 mg/kg/d). Mice received the corresponding solutions by intraperitoneal injection (i.p.) for 7 days before the Y-maze active tests. Galactose 10% was given to all groups except control and Scop groups, 30 min before the trial. Levels of Acetylcholinesterase Activity (AChE), Ascorbic Acid (AA), Gluthatione (GSH) and Malondialdehyde (MDA) in mice brains were examined. Results: Chronic administration of galactose significantly impaired cognitive performance in Y maze, caused marked oxidative damages and a significant increase in the acetylcholinesterase activity as compared to other groups. On the contrary, ASAE (300 mg/kg) treatment suppressed galactoseinduced oxidative damage by ameliorating the increased levels of GSH and AA. Moreover, ASAE treatment reduced brain AChE activities in the galactose-induced model. Conclusion: These findings suggest that ASAE exerts potent anti-amnesic effects via the modulation of cholinergic and antioxidant activities. The observed pharmacological activities should be further evaluated by detailed experimental studies and validated by clinical trials.


2020 ◽  
Vol 15 (7) ◽  
pp. 559-569 ◽  
Author(s):  
Zhen Chang ◽  
Youhan Wang ◽  
Chang Liu ◽  
Wanli Smith ◽  
Lingbo Kong

Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marjan Talebi ◽  
Mohsen Talebi ◽  
Tahereh Farkhondeh ◽  
Jesus Simal-Gandara ◽  
Dalia M. Kopustinskiene ◽  
...  

AbstractChrysin has been shown to exert several beneficial pharmacological activities. Chrysin has anti-cancer, anti-viral, anti-diabetic, neuroprotective, cardioprotective, hepatoprotective, and renoprotective as well as gastrointestinal, respiratory, reproductive, ocular, and skin protective effects through modulating signaling pathway involved in apoptosis, oxidative stress, and inflammation. In the current review, we discussed the emerging cellular and molecular mechanisms underlying therapeutic indications of chrysin in various cancers. Online databases comprising Scopus, PubMed, Embase, ProQuest, Science Direct, Web of Science, and the search engine Google Scholar were searched for available and eligible research articles. The search was conducted by using MeSH terms and keywords in title, abstract, and keywords. In conclusion, experimental studies indicated that chrysin could ameliorate cancers of the breast, gastrointestinal tract, liver and hepatocytes, bladder, male and female reproductive systems, choroid, respiratory tract, thyroid, skin, eye, brain, blood cells, leukemia, osteoblast, and lymph. However, more studies are needed to enhance the bioavailability of chrysin and evaluate this agent in clinical trial studies. Graphic abstract


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriela Elis Wachholz ◽  
Julia do Amaral Gomes ◽  
Juliano André Boquett ◽  
Fernanda Sales Luiz Vianna ◽  
Lavínia Schuler-Faccini ◽  
...  

Abstract Background Due to the diversity of studies in animal models reporting that molecular mechanisms are involved in the teratogenic effect of the Zika virus (ZIKV), the objective of the present study is to evaluate the methodological quality of these studies, as well as to demonstrate which genes and which molecular pathways are affected by ZIKV in different animal models. Methods This search will be performed in four databases: PubMed/MEDLINE, EMBASE, Web of Science, and Scopus, as well as in the grey literature. The studies selection process will be reported through the PRISMA Statement diagram model. All studies describing the molecular mechanisms possibly involved in the development of malformations caused by embryonic/fetal ZIKV exposure in animal models with an appropriate control group and methodology will be included (including, for instance, randomized and non-randomized studies). All animals used as experimental models for ZIKV teratogenesis may be included as long as exposure to the virus occurred during the embryonic/fetal period. From the selected studies, data will be extracted using a previously prepared standard form. Bias risk evaluation will be conducted following the SYRCLE’s Risk of Bias tool. All data obtained will be tabulated and organized by outcomes (morphological and molecular). Discussion With the proposed systematic review, we expect to present results about the methodological quality of the published studies with animal models that investigated the molecular mechanisms involved in the teratogenic effect of ZIKV, as well as to show the studies with greater reliability. Systematic review registration PROSPERO CRD42019157316


2021 ◽  
Vol 413 (8) ◽  
pp. 2125-2134
Author(s):  
Domenic Dreisbach ◽  
Georg Petschenka ◽  
Bernhard Spengler ◽  
Dhaka R. Bhandari

AbstractMass spectrometry–based imaging (MSI) has emerged as a promising method for spatial metabolomics in plant science. Several ionisation techniques have shown great potential for the spatially resolved analysis of metabolites in plant tissue. However, limitations in technology and methodology limited the molecular information for irregular 3D surfaces with resolutions on the micrometre scale. Here, we used atmospheric-pressure 3D-surface matrix-assisted laser desorption/ionisation mass spectrometry imaging (3D-surface MALDI MSI) to investigate plant chemical defence at the topographic molecular level for the model system Asclepias curassavica. Upon mechanical damage (simulating herbivore attacks) of native A. curassavica leaves, the surface of the leaves varies up to 700 μm, and cardiac glycosides (cardenolides) and other defence metabolites were exclusively detected in damaged leaf tissue but not in different regions of the same leaf. Our results indicated an increased latex flow rate towards the point of damage leading to an accumulation of defence substances in the affected area. While the concentration of cardiac glycosides showed no differences between 10 and 300 min after wounding, cardiac glycosides decreased after 24 h. The employed autofocusing AP-SMALDI MSI system provides a significant technological advancement for the visualisation of individual molecule species on irregular 3D surfaces such as native plant leaves. Our study demonstrates the enormous potential of this method in the field of plant science including primary metabolism and molecular mechanisms of plant responses to abiotic and biotic stress and symbiotic relationships. Graphical abstract


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


Sign in / Sign up

Export Citation Format

Share Document