scholarly journals circHIPK3 Exacerbates Folic Acid-Induced Renal Tubulointerstitial Fibrosis by Sponging miR-30a

2022 ◽  
Vol 12 ◽  
Author(s):  
Yan Wu ◽  
Junjun Luan ◽  
Congcong Jiao ◽  
Shiwen Zhang ◽  
Cong Ma ◽  
...  

Renal tubulointerstitial fibrosis is a common pathological feature of progressive chronic kidney disease (CKD), and current treatment has limited efficacy. The circular RNA circHIPK3 is reported to participate in the pathogenesis of various human diseases. However, the role of circHIPK3 in renal fibrosis has not been examined. In this study, we aimed to determine whether and how circHIPK3 might participate in the pathogenesis of renal fibrosis. Mice received a peritoneal injection of folic acid (250 mg/kg). Of note, 30 days later, renal fibrosis was present on periodic acid–Schiff (PAS) and Masson staining, and mRNA and protein of profibrotic genes encoding fibronectin (FN) and collagen 1 (COL1) were increased. Renal circHIPK3 was upregulated, while miR-30a was downregulated, assessed by quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH). The expression of transforming growth factor beta-1 (TGF-β1) was increased by qPCR analysis, immunoblotting, and immunofluorescence. Renal circHIPK3 negatively correlated with miR-30a, and kidney miR-30a negatively correlated with TGF-β1. Target Scan and miRanda algorithms predicted three perfect binding sites between circHIPK3 and miR-30a. We found that circHIPK3, miR-30a, and TGF-β1 colocalized in the cytoplasm of human tubular epithelial cells (HK-2 cells) on FISH and immunofluorescence staining. We transfected circHIPK3 and a scrambled RNA into HK-2 cells; miR-30a was downregulated, and the profibrotic genes such as TGF-β1, FN, and COL1 were upregulated and assessed by qPCR, immunoblotting, and immunofluorescence staining. Third, the upregulation of circHIPK3, downregulation of miR-30a, and overproduction of profibrotic FN and COL1 were also observed in HK-2 cells exposed to TGF-β1. Finally, renal biopsies from patients with chronic tubulointerstitial nephritis manifested similar expression patterns of circHIPK3, miR-30a, and profibrotic proteins, such as TGF-β1, FN, and COL1 as observed in the experimental model. A feed-forward cycle was observed among circHIPK3, miR-30a, and TGF-β1. Our results suggest that circHIPK3 may contribute to progressive renal fibrosis by sponging miR-30a. circHIPK3 may be a novel therapeutic target for slowing CKD progression.

2013 ◽  
Vol 305 (12) ◽  
pp. F1796-F1803 ◽  
Author(s):  
Yoshifumi Hamasaki ◽  
Kent Doi ◽  
Rui Maeda-Mamiya ◽  
Emi Ogasawara ◽  
Daisuke Katagiri ◽  
...  

A selective 5-hydroxytryptamine (5-HT) 2A receptor antagonist sarpogrelate (SG) blocks serotonin-induced platelet aggregation. It has been used clinically for the treatment of peripheral arterial disease. SG might be able to improve chronic ischemia, which contributes to renal fibrosis progression by maintaining renal microcirculation. This study investigated whether SG suppresses renal fibrosis. C57BL/6 mice fed a 0.2% adenine-containing diet for 6 wk developed severe tubulointerstitial fibrosis with kidney dysfunction. Subsequent SG treatment (30 mg·kg−1·day−1) for 4 wk improved these changes significantly by increasing peritubular blood flow in the fibrotic area, as evaluated by intravital microscopy and decreasing fibrin deposition. Urinary L-type fatty acid-binding protein, up-regulated by renal hypoxia, was also reduced by SG. Additionally, results showed that mRNA expression of plasminogen activator inhibitor-1 (PAI-1), which is known to promote fibrosis by mediating and enhancing transforming growth factor (TGF)-β1 signaling, was suppressed by SG treatment in the kidney. In vitro experiments using cultured murine proximal tubular epithelial (mProx) cells revealed that incubation with TGF-β1 and 5-HT increased PAI-1 mRNA expression; SG significantly reduced it. In conclusion, SG reduces renal fibrosis not only by the antithrombotic effect of maintaining peritubular blood flow but also by suppressing PAI-1 expression in renal tubular cells.


2021 ◽  
Vol 7 ◽  
Author(s):  
Man Xu ◽  
Shumin Li ◽  
Jiajia Wang ◽  
Songming Huang ◽  
Aihua Zhang ◽  
...  

Background: Renal tubulointerstitial fibrosis is the key pathological feature in chronic kidney diseases (CKDs) with no satisfactory therapies in clinic. Cilomilast is a second-generation, selective phosphodiesterase-4 inhibitor, but its role in renal tubulointerstitial fibrosis in CKD remains unclear.Material and Methods: Cilomilast was applied to the mice with unilateral ureteric obstruction (UUO) and renal fibroblast cells (NRK-49F) stimulated by TGF-β1. Renal tubulointerstitial fibrosis and inflammation after UUO or TGF-β1 stimulation were examined by histology, Western blotting, real-time PCR and immunohistochemistry. KIM-1 and NGAL were detected to evaluate tubular injury in UUO mice.Results:In vivo, immunohistochemistry and western blot data demonstrated that cilomilast treatment inhibited extracellular matrix deposition, profibrotic gene expression, and the inflammatory response. Furthermore, cilomilast prevented tubular injury in UUO mice, as manifested by reduced expression of KIM-1 and NGAL in the kidney. In vitro, cilomilast attenuated the activation of fibroblast cells stimulated by TGF-β1, as shown by the reduced expression of fibronectin, α-SMA, collagen I, and collagen III. Cilomilast also inhibited the activation of TGF-β1-Smad2/3 signaling in TGF-β1-treated fibroblast cells.Conclusion: The findings of this study suggest that cilomilast is protective against renal tubulointerstitial fibrosis in CKD, possibly through the inhibition of TGF-β1-Smad2/3 signaling, indicating the translational potential of this drug in treating CKD.


2020 ◽  
Author(s):  
Sung-Eun Choi ◽  
Nara Jeon ◽  
Hoon Young Choi ◽  
Hyeon Joo Jeong ◽  
Beom Jin Lim

AbstractTubulointerstitial fibrosis is characterized by accumulation of the extracellular matrix in the interstitium. Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase family, is known for promoting cancer metastasis, invasion, and stromal fibrosis in various organs. Our previous study demonstrated expression of LOXL2 in kidney podocytes and tubular epithelial cells, and the association between elevated LOXL2 and tubulointerstitial fibrosis. The present study evaluated the effect of LOXL2 inhibition using an inhibitory monoclonal antibody (AB0023) on tubulointerstitial fibrosis in a folic acid-induced tubulointerstitial fibrosis mouse model. We also evaluated the association of LOXL2 with epithelial-mesenchymal transformation related molecules in vitro using HK-2 cells. Our data demonstrate that AB0023 prevented the progression of tubulointerstitial fibrosis significantly, as determined by trichrome and picro-sirius red staining, as well as the total collagen assay. The mean expression of phosphorylated Smad2 and Smad4 was lower in the AB0023-treated group although it was not statistically significant. Following transforming growth factor-β (TGF-β) challenge, LOXL2-deficient HK-2 cells exhibited significantly lower expression of the mesenchymal markers vimentin and fibronectin than control HK-2 cells. In conclusion, LOXL2 inhibition ameliorates renal fibrosis through the TGF-β/Smad signalling pathway.


2020 ◽  
Vol 134 (12) ◽  
pp. 1357-1376 ◽  
Author(s):  
Ran You ◽  
Wei Zhou ◽  
Yanwei Li ◽  
Yue Zhang ◽  
Songming Huang ◽  
...  

Abstract Non-specific inhibition of Rho-associated kinases (ROCKs) alleviated renal fibrosis in the unilateral ureteral obstruction (UUO) model, while genetic deletion of ROCK1 did not affect renal pathology in mice. Thus, whether ROCK2 plays a role in renal tubulointerstitial fibrosis needs to be clarified. In the present study, a selective inhibitor against ROCK2 or genetic approach was used to investigate the role of ROCK2 in renal tubulointerstitial fibrosis. In the fibrotic kidneys of chronic kidney diseases (CKDs) patients, we observed an enhanced expression of ROCK2 with a positive correlation with interstitial fibrosis. In mice, the ROCK2 protein level was time-dependently increased in the UUO model. By treating CKD animals with KD025 at the dosage of 50 mg/kg/day via intraperitoneal injection, the renal fibrosis shown by Masson’s trichrome staining was significantly alleviated along with the reduced expression of fibrotic genes. In vitro, inhibiting ROCK2 by KD025 or ROCK2 knockdown/knockout significantly blunted the pro-fibrotic response in transforming growth factor-β1 (TGF-β1)-stimulated mouse renal proximal tubular epithelial cells (mPTCs). Moreover, impaired cellular metabolism was reported as a crucial pathogenic factor in CKD. By metabolomics analysis, we found that KD025 restored the metabolic disturbance, including the impaired glutathione metabolism in TGF-β1-stimulated tubular epithelial cells. Consistently, KD025 increased antioxidative stress enzymes and nuclear erythroid 2-related factor 2 (Nrf2) in fibrotic models. In addition, KD025 decreased the infiltration of macrophages and inflammatory response in fibrotic kidneys and blunted the activation of macrophages in vitro. In conclusion, inhibition of ROCK2 may serve as a potential novel therapy for renal tubulointerstitial fibrosis in CKD.


2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


2011 ◽  
Vol 301 (4) ◽  
pp. F793-F801 ◽  
Author(s):  
Abolfazl Zarjou ◽  
Shanzhong Yang ◽  
Edward Abraham ◽  
Anupam Agarwal ◽  
Gang Liu

Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.


2018 ◽  
Vol 132 (21) ◽  
pp. 2339-2355 ◽  
Author(s):  
Zhenzhen Li ◽  
Xianghua Liu ◽  
Fengyan Tian ◽  
Ji Li ◽  
Qingwei Wang ◽  
...  

Epithelial-to-mesenchymal transition (EMT) is a phenotypic conversion that plays a crucial role in renal fibrosis leading to chronic renal failure. Mitogen-activated protein kinase phosphatase 2 (MKP2) is a member of the dual-specificity MKPs that regulate the MAP kinase pathway involved in transforming growth factor-β1 (TGF-β1)-induced EMT. However, the function of MKP2 in the regulation of EMT and the underlying mechanisms are still largely unknown. In the present study, we detected the expression of MKP2 in an animal model of renal fibrosis and evaluated the potential role of MKP2 in tubular EMT induced by TGF-β1. We found that the expression of MKP2 was up-regulated in the tubular epithelial of unilateral ureter obstruction rats. Meanwhile, we also demonstrated that TGF-β1 up-regulated MKP2 expression in NRK-52E cells during their EMT phenotype acquisition. Importantly, overexpression of MKP2 inhibited c-Jun amino terminal kinase (JNK) signaling and partially reversed EMT induced by TGF-β1. Moreover, reducing MKP2 expression enhanced JNK phosphorylation, promoted the E-cadherin suppression and induced α-SMA expression and fibronectin secretion in response to TGF-β1, which could be rescued by a JNK inhibitor. These results provide the first evidence that MKP2 is a negative feedback molecule induced by TGF-β1, and MKP2 overexpression inhibits TGF-β1-induced EMT through the JNK signaling pathway. MKP2 could be a promising target to be used in gene therapy for renal fibrosis.


2018 ◽  
Vol 315 (6) ◽  
pp. F1822-F1832 ◽  
Author(s):  
Zhengwei Ma ◽  
Qingqing Wei ◽  
Ming Zhang ◽  
Jian-Kang Chen ◽  
Zheng Dong

Renal fibrosis is a common pathological feature in chronic kidney disease (CKD), including diabetic kidney disease (DKD) and obstructive nephropathy. Multiple microRNAs have been implicated in the pathogenesis of both DKD and obstructive nephropathy, although the overall role of microRNAs in tubular injury and renal fibrosis in CKD is unclear. Dicer (a key RNase III enzyme for microRNA biogenesis) was specifically ablated from kidney proximal tubules in mice via the Cre-lox system to deplete micoRNAs. Proximal tubular Dicer knockout (PT- Dicer KO) mice and wild-type (WT) littermates were subjected to streptozotocin (STZ) treatment to induce DKD or unilateral ureteral obstruction (UUO) to induce obstructive nephropathy. Renal hypertrophy, renal tubular apoptosis, kidney inflammation, and tubulointerstitial fibrosis were examined. Compared with WT mice, PT- Dicer KO mice showed more severe tubular injury and renal inflammation following STZ treatment. These mice also developed higher levels of tubolointerstitial fibrosis. Meanwhile, PT- Dicer KO mice had a significantly higher Smad2/3 expression in kidneys than WT mice (at 6 mo of age) in both control and STZ-treated mice. Similarly, UUO induced more severe renal injury, inflammation, and interstitial fibrosis in PT- Dicer KO mice than WT. Although we did not detect obvious Smad2/3 expression in sham-operated mice (2–3 mo old), significantly more Smad2/3 was induced in obstructed PT- Dicer KO kidneys. These results supported a protective role of Dicer-dependent microRNA synthesis in renal injury and fibrosis development in CKD, specifically in DKD and obstructive nephropathy. Depletion of Dicer and microRNAs may upregulate Smad2/3-related signaling pathway to enhance the progression of CKD.


2018 ◽  
Vol 46 (5) ◽  
pp. 2056-2071 ◽  
Author(s):  
Long Zheng ◽  
Long Li ◽  
Guisheng Qi ◽  
Mushuang Hu ◽  
Chao Hu ◽  
...  

Background/Aims: Previous studies imply that telocytes may have a protective effect on fibrosis in various organs, including the liver, colon, and heart. The effect of telocytes on renal fibrosis remains unknown. Herein, this study was designed to investigate the effect of telocytes on renal fibrosis and the potential mechanisms involved. Methods: In a unilateral ureteral obstruction (UUO)-induced renal fibrosis model, telocytes were injected via the tail vein every other day for 10 days. The degree of renal damage and fibrosis was determined using histological assessment. The expression of collagen I, fibronectin, epithelial-mesenchymal transition markers, and Smad2/3 phosphorylation was examined by western blot analyses. Real-time PCR and enzyme-linked immunosorbent assay were performed in vivo to detect the levels of transforming growth factor (TGF)-β1 and various growth factors. Results: Telocytes attenuated renal fibrosis, as evidenced by reduced interstitial collagen accumulation, decreased expression of fibronectin and collagen I, upregulation of E-cadherin, and downregulation of α-smooth muscle actin. Furthermore, telocytes decreased serum TGF-β1 levels, suppressed Smad2/3 phosphorylation, and increased the expression of hepatocyte growth factor (HGF) in rat kidney tissue following UUO. Blockage of HGF counteracted the protective effect of telocytes on UUO-treated kidneys. Through the detection of HGF mRNA levels in vitro, we found that telocytes had no effect on HGF expression compared with renal fibroblasts. Conclusion: Telocytes attenuated UUO-induced renal fibrosis in rats, likely through enhancing the expression of HGF in an indirect manner.


2021 ◽  
Vol 19 (4) ◽  
pp. 508-513
Author(s):  
Jinhao Wu ◽  
Chao Huang ◽  
Gang Kan ◽  
Hanyu Xiao ◽  
Xiaoping Zhang ◽  
...  

Obstructive nephropathy often leads to renal tubulointerstitial fibrosis. Understanding of the pathogenesis of renal tubulointerstitial fibrosis caused by obstructive nephropathy is crucial to the development of effective therapeutic drugs to improve the prognosis of the patients. Silymarin, a polyphenolic flavonoid extracted from plants, has been shown to exhibit antiinflammatory and antioxidant effects ameliorating liver and kidney damage. However, the effect of silymarin on renal fibrosis in obstructive nephropathy remains to be explored. In this study, we found silymarin improved interstitial fibrosis and apoptosis induced by TGF-β1 and ameliorated oxidative damage. Our data further confirmed that silymarin regulates the TGF-β1/ Smad3 signaling pathway, and therefore improves renal tubular interstitial fibrosis caused by obstructive nephropathy.


Sign in / Sign up

Export Citation Format

Share Document