scholarly journals Lifelong Adaptation of Gastric Cell Proliferation and Mucosa Structure to Early Weaning-Induced Effects

2021 ◽  
Vol 12 ◽  
Author(s):  
Kethleen Mesquita da Silva ◽  
Isadora Campos Rattes ◽  
Gizela Maria Agostini Pereira ◽  
Patrícia Gama

The gastric mucosa is disturbed when breastfeeding is interrupted, and such early weaning (EW) condition permanently affects the differentiation of zymogenic cells. The aim of the study was to evaluate the immediate and long-term effects of EW on gastric cell proliferation, considering the molecular markers for cell cycle, inflammation, and metaplasia. Overall, we investigated the lifelong adaptation of gastric growth. Wistar rats were divided into suckling-control (S) and EW groups, and gastric samples were collected at 18, 30, and 60 days for morphology, RNA, and protein isolation. Inflammation and metaplasia were not identified, but we observed that EW promptly increased Ki-67-proliferative index (PI) and mucosa thickness (18 days). From 18 to 30 days, PI increased in S rats, whereas it was stable in EW animals, and such developmental change in S made its PI higher than in EW. At 60 days, the PI decreased in S, making the indices similar between groups. Spatially, during development, proliferative cells spread along the gland, whereas, in adults, they concentrate at the isthmus-neck area. EW pushed dividing cells to this compartment (18 days), increased PI at the gland base (60 days), but it did not interfere in expression of cell cycle molecules. At 18 days, EW reduced Tgfβ2, Tgfβ3, and Tgfbr2 and TβRII and p27 levels, which might regulate the proliferative increase at this age. We demonstrated that gastric cell proliferation is immediately upregulated by EW, corroborating previous results, but for the first time, we showed that such increased PI is stable during growth and aging. We suggest that suckling and early weaning might use TGFβs and p27 to trigger different proliferative profiles during life course.

Nutrition ◽  
2014 ◽  
Vol 30 (3) ◽  
pp. 343-349 ◽  
Author(s):  
Heloisa Ghizoni ◽  
Priscila Moreira Figueiredo ◽  
Marie-Pierre Moisan ◽  
Daniela Ogias ◽  
Luciana Harumi Osaki ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1549 ◽  
Author(s):  
Marta Grodzik ◽  
Jaroslaw Szczepaniak ◽  
Barbara Strojny-Cieslak ◽  
Anna Hotowy ◽  
Mateusz Wierzbicki ◽  
...  

Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.


1997 ◽  
Vol 6 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Rajesh K. Sharma ◽  
Berndt Ehinger

The MIB-1 antibody against a nuclear protein Ki-67 was used to study the proliferation of cells in the rabbit retinal transplants. Fragmented pieces of embryonic day 15 rabbit retinas were transplanted into the subretinal space of adult rabbits and allowed to survive for different times. Fragmented donor tissue starts organizing in rosettes 1 day after transplantation. The transplanted cells continue to proliferate in the host eye and their pattern of proliferation resembles that of normal developing retina, suggesting that the factors responsible for the proliferation pattern are preserved after transplantation. The dividing cells in metaphase line up in the luminal layers of the rosettes. Certain cells become postmitotic in the regions corresponding to the inner retina first, followed by the cells in the luminal layers of rosettes. Cells in the regions between the rosettes, corresponding to the inner nuclear layer, presumably the Müller cells, proliferate significantly for the equivalent age of postnatal day 2. Few cells in these regions proliferate for at least the equivalent age of postnatal day 11 in transplants. There is a layer of nonproliferating, degenerating cells in the transplant situated close to the host retina. However, some cells in this layer, situated at the host-graft interface, proliferate. These cells proliferate for a long time possibly indicating gliosis.


2019 ◽  
Vol 9 (7) ◽  
pp. 982-987
Author(s):  
Xiaoying Wang ◽  
Yanke Hao

Vascular smooth muscle cell (VSMC) abnormal proliferation is related to hypertension. P27 can arrest cell cycle and its downregulation is associated with hypertension. miR-155 plays a regulatory role in VSMC proliferation, while its relationship with hypertension is still unclear. Bioinformatics analysis reveals a relationship between p27 mRNA and miR-155. The present study explores miR-155's role in p27 expression, VSMC proliferation and apoptosis, as well as in the pathogenesis of hypertension. Dual luciferase assay verified the relationship between miR-155 and p27. miR155, p27, α-SMA, and Ki-67 expressions in the thoracic aorta media of rat hypertension model were detected. VSMCs were cultured in vitro and grouped into, anti-miR-NC, anti-miR-155, pIRES2-blank, pIRES2-p27, and anti-miR-155 + pIRES2-p27 groups followed by analysis of cell cycle by flow cytometry and cell proliferation by EdU staining. Hypertension rats were randomly divided into antagomir-155 and antagomir-control. Caudal artery systolic and diastolic pressures were measured. miR-155 suppressed p27 expression. miR-155 and Ki-67 expressions were significantly enhanced, while p27 and α-SMA levels were reduced in the tunica media from hypertension rats compared with control. Downregulation of miR-155 and/or upregulation of p27 obviously declined cell proliferation and arrested cell cycle in G1 phase. Antagomir-155 injection significantly decreased systolic and diastolic pressures, elevated p27 and α-SMA expressions in media, and reduced the thickness of tunica media. miR-155 enhances VSMC proliferation via regulating p27. miR-155 enhancement was related to hypertension. miR-155 plays a therapeutic effect in hypertension.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4916-4916
Author(s):  
Tian-Hui Yang ◽  
Kathryn E Quintanilla ◽  
Amy M Cortez ◽  
Jeffrey J. Molldrem

Abstract Proteinase 3 (P3), a serine protease found in primary granules in granulocytes, is the target of T cell- and B cell-mediated autoimmunity in Wegener’s granulomatosis (WG) and of anti-leukemia immunity mediated by PR1 (VLQELNVTV)-specific cytotoxic T lymphocytes (PR1-CTL). Although aberrant P3 and neutrophil elasase (NE) expression in leukemia increases susceptibility to PR1-CTL-mediated killing, overexpression of P3 also induces apoptosis of the high affinity PR1-CTL leading to deletional tolerance and leukemia outgrowth. Because expression of P3 and NE in sera from leukemia patients is increased by 5-fold compared to healthy controls, we sought to determine whether such overexpression of P3 or NE impairs PR1-CTL immunity to leukemia by a direct affect on T lymphocytes. To study this, T cells from healthy donors were activated by anti-CD3 and anti-CD28 and exposed to increasing concentration of P3 or NE over one to five days, and the percentage of apoptotic cells and cell proliferation were determined by flow cytometry using PI, anti-Ki-67, and CFSE. P3, but not NE, induced dose-dependent apoptosis of up to 30% of T cells, and in the non-apoptotic cells, a 50% inhibition of CD4 and CD8 T cell proliferation at 1 μg/ml and 100% at 10 μg/ml compared to untreated cells. This effect was not enzyme-mediated since prior exposure of P3 to 56°C or co-incubation with the serine protease inhibitors Elafin and alpha-1 antitrypsin showed no affect on apoptosis or cell proliferation. P3 induced a cell cycle arrest at the G0/G1 interface, determined with PI and Ki-67 staining of healthy donor T cells that were exposed to P3 for up to 3 days. In contrast, at protein concentrations up to 25 μg/ml, NE showed no such inhibitory effect on apoptosis or cell proliferation. In addition to its role as a leukemia-associated antigen, P3 is also targeted by the cANCA antibody in patients with WG and the serum titer correlates with disease activity. Therefore, we hypothesized that the effect of P3 on T cell proliferation might also be affected by humoral immunity during circumstances of systemic autoimmunity. Co-incubation of P3 with a molar excess of cANCA reversed P3- mediated inhibition of both CD4 and CD8 T cells, consistent with a role of this antibody and the P3 target antigen in controlling T cell autoreactivity. Taken together, this data shows a new role for P3 in regulating T cell proliferation, which occurs only at high P3 concentration, similar to P3 in sera from leukemia patients, which is not enzymedependent. This supports a direct role for P3 in regulating both anti-leukemia immunity and autoimmunity. This data will need to be considered for effective immunotherapy targeting P3 in leukemia patients and these inhibitory effects also suggest a role for P3 in regulating autoimmunity at sites of inflammation, such as in patients with WG.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4149-4149
Author(s):  
Florencia Palacios ◽  
Xiao-Jie Yan ◽  
Jaqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
Steven L. Allen ◽  
...  

Abstract Chronic Lymphocytic Leukemia (CLL) is an incurable disease in which most of the tumor cells in the blood are arrested in G0/G1 stages of the cell cycle with only a minimal number displaying proliferative activity. In this regard, our group has found by gene expression profiling (GEP) that the proliferative fraction (PF) of CLL cells is enriched in the intraclonal subset marked by CXCR4dim CD5brite expression. Indeed, this subset differs by more than 1000 genes from the CXCR4brite CD5dim resting fraction (RF). The genes over-expressed in the PF relate to replication and migration as well as regulation of gene expression. One of these genes is Musashi 2 (MSI2). Of note, MSI2 is expressed at the highest levels in IGHV unmutated CLL (U-CLL) clones and their PFs. Normally, MSI2 binds mRNA and blocks translation of proteins, playing an important role in post-transcriptional regulation. In addition, MSI2 has been linked to proliferation of normal and malignant stem cells, tumorigenesis, and poor prognosis. In CLL, high MSI2 mRNA expression has been identified in patients with worse prognosis. Nevertheless, nothing is known about the function of MSI2 in CLL cells. Therefore, we have begun to study the biological role of MSI2 in B-CLL cells and its possible association with B-cell proliferation and CLL disease progression. Fist, we studied MSI2 protein expression by flow cytometry in CD19+ B cells from healthy donors (HD) and CD5+CD19+ cells from CLL patients, observing an up-regulation in CLL compared to HD. Also, we documented higher MSI2 expression in U-CLL compared to IGHV-mutated (M-CLL) CLL as well as HD. Within the leukemic clone, we observed that MSI2 expression was highest in the PF, lower in the intermediate (INT) fraction (defined as CXCR4int CD5int), and much lower in the RF (PF>INT>RF). The PF expressed 40% more MSI2 than the RF, suggesting that the highest amounts of MSI2 protein is in dividing and recently-divided cells of the clone. Since CLL B-cell proliferation occurs in the microenvironment of lymphoid organs, presumably delivered by external signals, we tested whether such signals could stimulate MSI2 expression. After stimulating CLL cells with TLR9 agonist + IL15 + IL2 in vitro MSI2 protein was up-regulated form 0.3 to 2.5 fold. In addition, the increase in MSI2 protein was associated with an enhancement in Ki-67+ cells and in phosphorylation of MAPK/ERK and AKT signaling components, measured by flow cytometry. These results suggest that signals from the microenvironment that induce cell growth and proliferation lead to MSI2 synthesis in CLL B cells. In order to study a possible association between MSI2 expression and cell division, we labeled CLL PBMCs with a dilutable cell tracer, CFSE, and then stimulated them in vitro with TLR9 agonist + IL15 + IL2. These studies indicated that MSI2 protein synthesis was increased in the activated cells and that MSI2 protein levels increased with each cell division. However, it was also clear that this increase was not directly associated to the extent of cell replication as CLL B cells from only 10% of the patients underwent 4 cycles of cell division. Since we observed an increase in MSI2 and Ki-67 expression after stimulation in all patients' clones but did not detect replication of CLL cells in all patients, we studied the effects of in vitro stimulation on cell cycle entry and completion and how this related to MSI2 expression. Experiments using propidium iodide to evaluate DNA content of PBMCs showed that in vitro stimulation increased the percentage of cells in S phase (5-25%) compared to control cells without activation (<5%), whereas only a small fraction of cells entered the M/G2 phases, with or without activation (<1% and <0.5%, respectably) suggesting that only a small portion of the cells completed the cell cycle and divided. Hence, MSI2 synthesis corresponds with DNA replication and not cell division, suggesting that MSI2 could be an important molecule involved in entry into and/or in the early phases of the cell cycle. These results, and the facts that MSI2 plays an important role in post-transcriptional regulation and is associated with cell proliferation and poor prognosis in cancer, suggest that a better understanding of the role of MSI2 in CLL patients will provide clues to understanding the birth and growth of CLL B cells and to identifying and designing new therapeutic strategies for the disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 249-255 ◽  
Author(s):  
Mette D. Hazenberg ◽  
James W. T. Cohen Stuart ◽  
Sigrid A. Otto ◽  
Jan C. C. Borleffs ◽  
Charles A. B. Boucher ◽  
...  

Abstract In human immunodeficiency virus (HIV)-1 infection, highly increased T-cell turnover was proposed to cause exhaustion of lymphocyte production and consequently development of AIDS. Here, we investigated cell proliferation, as measured by expression of the Ki-67 nuclear antigen, in peripheral blood CD4+ and CD8+ lymphocyte subpopulations before and during highly active antiretroviral therapy (HAART). In untreated HIV-1 infection, both the percentage and number of Ki-67+CD4+ and CD8+ lymphocytes were significantly increased, compared with values obtained from healthy individuals. A more than 10-fold increase in the percentage of dividing naive CD4+ T cells in the blood was found when the number of these cells were below 100 per μL.. HAART induced an immediate decline in Ki-67 antigen expression, despite often very low CD4+ T-cell numbers, arguing against increased proliferation being a homeostatic response. After approximately 24 weeks of HAART treatment, a transient increase in the number of proliferating cells was seen, but only in the CD4+CD27+ memory pool. In the CD8+ T-cell compartment, the number of dividing cells was elevated 20- to 25-fold. This increase was most notable in the CD27+ CD 45RO+ and CD27−CD45RO+ memory CD8+ T-cell pool, corresponding with the degree of expansion of these subsets. Reduction of plasma HIV-RNA load by HAART was accompanied by a decrease in numbers and percentages of dividing cells in all CD8+T-cell subsets. Taken together, our results indicate that peripheral T-cell proliferation is a consequence of generalized immune activation. (Blood. 2000;95:249-255)


1967 ◽  
Vol 34 (3) ◽  
pp. 735-743 ◽  
Author(s):  
A. K. Asbury

Proliferation of Schwann cells in neonatal mouse sciatic nerve was studied radioautographically in 1-µ glycol methacrylate sections. 28 mice were injected with thymidine-3H, 4 µc/g, 48 hr after birth, and were killed serially over the next 4 days. For the cell cycle following injection, the generation time was approximately 24 hr as determined by grain-count halving data; the duration of synthesis phase was 8 hr as determined from a curve constructed from the per cent of mitotic figures containing label; and the labeling index was 9% at 2 hr after injection. With these estimates, the per cent of Schwann cells proliferating was calculated to be 27%. In addition, roughly 25% of dividing cells appeared to cease division during the cell cycle under study. The relationship of these findings to other events during maturation of nerve is discussed.


2020 ◽  
Author(s):  
Huiyi Deng ◽  
Meijiao Li ◽  
Rui. Zheng ◽  
Huijun Qiu ◽  
Tian Yuan ◽  
...  

Abstract Objectives: The hippo-yes-associated protein (YAP) pathway plays an important role in epithelial cell proliferation and inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the underlying mechanisms remain unclear. This study intends to investigate the role of YAP and the nuclear factor kappa-B (NF-κB) signalling pathway in nasal epithelial cell proliferation and the expression of epithelium-derived cytokines in CRSwNP.Methods: The expression levels of YAP, TEAD1, Ki-67, and NF-κB in sinonasal mucosa, primary nasal epithelial cells (NPECs), and human nasal epithelial RPMI 2650 cells were detected by RT-qPCR and immunoblotting. NPECs were cultured and treated with verteporfin (VP), a selective YAP inhibitor, YAP shRNA or BAY 11-7082, a small molecule inhibitor of NF-κB. The relationship between cell proliferation and hippo pathway activity was explored using a cell counting kit-8 (CCK-8) assay, 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) labelling and colony formation assay. The cell cycle and apoptosis were examined through flow cytometry (FCM) assay. The epithelium-derived cytokines including interleukin (IL-) 33, IL-25 and thymic stromal lymphopoietin(TSLP) were detected by RT-qPCR.Results: The hippo pathway effector YAP, Ki-67, p65 NF-κB, and cyclin D1were significantly increased in CRSwNP compared with control mucosa; which was accompanied by overexpression of interleukin (IL)-33, IL-25, and thymic stromal lymphopoieth (TSLP). Pharmaceutical inhibition of YAP by VP suppressed cell proliferation of RPMI 2650 cells by blocking cell cycle progression at G0/G1 without inducing obvious cell apoptosis. Furthermore, lentiviral transfection-mediated knockdown of hippo pathway activity reduced the expression of IL-33,,IL-25, TSLP as well as p65 NF-κB in RPMI 2650 cells. Downregulation of NF-κB pathway with BAY 11-7082 in NPECs could decrease the mRNA level of TSLP, IL-33 and IL-25 accordingly.Conclusions: Inhibition of hippo pathway suppressednasal epithelial cell proliferation and declined the expression of epithelium-derived cytokines IL-33 and IL-25 and TSLP expression via the NF-κB signalling pathway in NPECs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hera Saqub ◽  
Hannah Proetsch-Gugerbauer ◽  
Vladimir Bezrookove ◽  
Mehdi Nosrati ◽  
Edith M. Vaquero ◽  
...  

Abstract Cholangiocarcinoma (CCA) is a highly invasive cancer, diagnosed at an advanced stage, and refractory to surgical intervention and chemotherapy. Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcriptional processes, and are considered potential therapeutic targets for cancer. Dinaciclib is a small molecule multi-CDK inhibitor targeting CDK 2/5/9. In this study, the therapeutic efficacy of dinaciclib was assessed using patient-derived xenograft cells (PDXC) and CCA cell lines. Treatment with dinaciclib significantly suppressed cell proliferation, induced caspase 3/7 levels and apoptotic activity in PDXC and CCA cell lines. Dinaciclib suppressed expression of its molecular targets CDK2/5/9, and anti-apoptotic BCL-XL and BCL2 proteins. Despite the presence of cyclin D1 amplification in the PDXC line, palbociclib treatment had no effect on cell proliferation, cell cycle or apoptosis in the PDXC as well as other CCA cell lines. Importantly, dinaciclib, in combination with gemcitabine, produced a robust and sustained inhibition of tumor progression in vivo in a PDX mouse model, greater than either of the treatments alone. Expression levels of two proliferative markers, phospho-histone H3 and Ki-67, were substantially suppressed in samples treated with the combination regimen. Our results identify dinaciclib as a novel and potent therapeutic agent alone or in combination with gemcitabine for the treatment of CCA.


Sign in / Sign up

Export Citation Format

Share Document