scholarly journals Development and Validation of Methodology for Estimating Potato Canopy Structure for Field Crop Phenotyping and Improved Breeding

2021 ◽  
Vol 12 ◽  
Author(s):  
Filipe de Jesus Colwell ◽  
Jock Souter ◽  
Glenn J. Bryan ◽  
Lindsey J. Compton ◽  
Neil Boonham ◽  
...  

Traditional phenotyping techniques have long been a bottleneck in breeding programs and genotype- phenotype association studies in potato, as these methods are labor-intensive and time consuming. In addition, depending on the trait measured and metric adopted, they suffer from varying degrees of user bias and inaccuracy, and hence these challenges have effectively prevented the execution of large-scale population-based field studies. This is true not only for commercial traits (e.g., yield, tuber size, and shape), but also for traits strongly associated with plant performance (e.g., canopy development, canopy architecture, and growth rates). This study demonstrates how the use of point cloud data obtained from low-cost UAV imaging can be used to create 3D surface models of the plant canopy, from which detailed and accurate data on plant height and its distribution, canopy ground cover and canopy volume can be obtained over the growing season. Comparison of the canopy datasets at different temporal points enabled the identification of distinct patterns of canopy development, including different patterns of growth, plant lodging, maturity and senescence. Three varieties are presented as exemplars. Variety Nadine presented the growth pattern of an early maturing variety, showing rapid initial growth followed by rapid onset of senescence and plant death. Varieties Bonnie and Bounty presented the pattern of intermediate to late maturing varieties, with Bonnie also showing early canopy lodging. The methodological approach used in this study may alleviate one of the current bottlenecks in the study of plant development, paving the way for an expansion in the scale of future genotype-phenotype association studies.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3798
Author(s):  
Hamid Iftikhar ◽  
Eduardo Sarquis ◽  
P. J. Costa Branco

Existing megawatt-scale photovoltaic (PV) power plant producers must understand that simple and low-cost Operation and Maintenance (O&M) practices, even executed by their own personal and supported by a comparison of field data with simulated ones, play a key role in improving the energy outputs of the plant. Based on a currently operating 18 MW PV plant located in an under-developing South-Asia country, we show in this paper that comparing real field data collected with simulated results allows a central vision concerning plant underperformance and valuable indications about the most important predictive maintenances actions for the plant in analysis. Simulations using the globally recognized software PVSyst were first performed to attest to the overall power plant performance. Then, its energy output was predicted using existing ground weather data located at the power plant. Compared with the actual plant’s annual energy output, it was found that it was underperforming by −4.13%, leading to a potential monetary loss of almost 175,000 (EUR)/year. Besides, an analysis of the O&M power plant reports was performed and compared to the best global practices. It was assessed that the tracker systems’ major issues are the forerunner of the most significant PV power plant underperformance. In addition, issues in inverters and combiner boxes were also reported, leading to internal shutdowns. In this case, predictive maintenance and automated plant diagnosis with a bottom-up approach using low-cost data acquisition and processing systems, starting from the strings level, were recommended.


Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


Author(s):  
V. Skibchyk ◽  
V. Dnes ◽  
R. Kudrynetskyi ◽  
O. Krypuch

Аnnotation Purpose. To increase the efficiency of technological processes of grain harvesting by large-scale agricultural producers due to the rational use of combine harvesters available on the farm. Methods. In the course of the research the methods of system analysis and synthesis, induction and deduction, system-factor and system-event approaches, graphic method were used. Results. Characteristic events that occur during the harvesting of grain crops, both within a single production unit and the entire agricultural producer are identified. A method for predicting time intervals of use and downtime of combine harvesters of production units has been developed. The roadmap of substantiation the rational seasonal scenario of the use of grain harvesters of large-scale agricultural producers is developed, which allows estimating the efficiency of each of the scenarios of multivariate placement of grain harvesters on fields taking into account influence of natural production and agrometeorological factors on the efficiency of technological cultures. Conclusions 1. Known scientific and methodological approaches to optimization of machine used in agriculture do not take into account the risks of losses of crops due to late harvesting, as well as seasonal natural and agrometeorological conditions of each production unit of the farmer, which requires a new approach to the rational use of rational seasonal combines of large agricultural producers. 2. The developed new approach to the substantiation of the rational seasonal scenario of the use of combined harvesters of large-scale agricultural producers allows taking into account the costs of harvesting of grain and the cost of the lost crop because of the lateness of harvesting at optimum variants of attraction of additional free combine harvesters. provides more profit. 3. The practical application of the developed road map will allow large-scale agricultural producers to use combine harvesters more efficiently and reduce harvesting costs. Keywords: combine harvesters, use, production divisions, risk, seasonal scenario, large-scale agricultural producers.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao Li Ma ◽  
Guang Tao Fei ◽  
Shao Hui Xu

Abstract In this study, polyaniline (PANI) is prepared by means of chemical oxidization polymerization and directly loaded on the modified fiber ball (m-FB) to obtain macroscale polyaniline/modified fiber ball (PANI/m-FB) composite, and then its removal ability of Cr(VI) is investigated. The effects of different parameters such as contact time, pH value and initial concentration on Cr(VI) removal efficiency are discussed. The experimental results illustrate that the favorable pH value is 5.0 and the maximum removal capacity is measured to be 293.13 mg g−1. Besides, PANI/m-FB composites can be regenerated and reused after being treated with strong acid. The kinetic study indicates that the adsorption procedure is mainly controlled by chemical adsorption. More importantly, the macroscale of composites can avoid secondary pollution efficiently. Benefiting from the low cost, easy preparation in large scale, environmentally friendly, excellent recycling performance as well as high removal ability, PANI/m-FB composites exhibit a potential possibility to remove Cr(VI) from industrial waste water. Graphic Abstract The polyaniline (PANI) was coated on modified fiber ball (m-FB) to remove Cr(VI) in waste water, and this kind of PANI/m-FB composites can avoid secondary pollution efficiently due to its macrostructure. Furthermore, the removal capacity can reach to 291.13 mg/g and can be multiple reused.


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-28
Author(s):  
Yuxiang Lin ◽  
Wei Dong ◽  
Yi Gao ◽  
Tao Gu

With the increasing relevance of the Internet of Things and large-scale location-based services, LoRa localization has been attractive due to its low-cost, low-power, and long-range properties. However, existing localization approaches based on received signal strength indicators are either easily affected by signal fading of different land-cover types or labor intensive. In this work, we propose SateLoc, a LoRa localization system that utilizes satellite images to generate virtual fingerprints. Specifically, SateLoc first uses high-resolution satellite images to identify land-cover types. With the path loss parameters of each land-cover type, SateLoc can automatically generate a virtual fingerprinting map for each gateway. We then propose a novel multi-gateway combination strategy, which is weighted by the environmental interference of each gateway, to produce a joint likelihood distribution for localization and tracking. We implement SateLoc with commercial LoRa devices without any hardware modification, and evaluate its performance in a 227,500-m urban area. Experimental results show that SateLoc achieves a median localization error of 43.5 m, improving more than 50% compared to state-of-the-art model-based approaches. Moreover, SateLoc can achieve a median tracking error of 37.9 m with the distance constraint of adjacent estimated locations. More importantly, compared to fingerprinting-based approaches, SateLoc does not require the labor-intensive fingerprint acquisition process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


Sign in / Sign up

Export Citation Format

Share Document