scholarly journals Seasonal Nutrient Cycling and Enrichment of Nutrient-Related Soil Microbes Aid in the Adaptation of Ramie (Boehmeria nivea L.) to Nutrient-Deficient Conditions

2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglan Wu ◽  
Shuai Xue ◽  
Yasir Iqbal ◽  
Hucheng Xing ◽  
Yucheng Jie

The breeding for varieties tolerant of adverse growing conditions is critical for sustainable agriculture, especially for ramie (Boehmeria nivea L.). However, a lack of information on the tolerance of ramie to nutrient-deficient conditions has hindered efforts to breed ramie varieties tolerant of such conditions. The main objective of this study was to explore the tolerance strategies of ramie plants under poor soil conditions using long-term (8–9 years) field trials. Genotypes of Duobeiti 1 and Xiangzhu XB were highly tolerant of poor soil conditions. The contributions of seasonal nutrient cycling and rhizobacteria to the ability of ramie to tolerate poor soil were tested. Nitrogen and phosphorus retranslocation to the root at the end of the growing season helped ramie adapt to poor soil conditions. The contribution of the microbial community was analyzed using high-throughput Illumina MiSeq sequencing technology. The enrichment of beneficial bacteria (mainly Bradyrhizobium, Gaiella, and norank_o_Gaiellales) and the reduction of harmful fungi (mainly Cladosporium and Aspergillus) also contributed to the ability of ramie to tolerate poor soils. The results of this study provide new insight into the ability of ramie to tolerate adverse conditions and aid future efforts to breed and cultivate ramie tolerant of adverse conditions.

2004 ◽  
Vol 34 (10) ◽  
pp. 2074-2088 ◽  
Author(s):  
François P Teste ◽  
Margaret G Schmidt ◽  
Shannon M Berch ◽  
Chuck Bulmer ◽  
Keith N Egger

We studied the effects of commercially available (Laccaria laccata (Scop.:Fr.) Berk. & Br. and Rhizopogon parksii Smith (Oregon source)) and native (R. parksii (British Columbia source)) ectomycorrhizal (EM) inoculants on the survival and growth of commercially grown interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) seedlings outplanted on reforestation sites (burned piles and clearcuts) and partially rehabilitated (shallow- and deep-tilled to a depth of 15 and 50 cm, respectively) landings. We also examined the physical and chemical properties of the soil and the EM status and foliar element levels of noninoculated Douglas-fir seedlings to provide information on the growing conditions found on these types of sites. Inoculation treatments did not significantly increase survival and growth of Douglas-fir seedlings 2 years after outplanting. However, because the average percent EM colonization of inoculated seedlings at time of outplanting was low (36%), the beneficial effects of these inoculants may not have been attained. It is possible that nursery conditions partially account for the low EM colonization of inoculated seedlings. We therefore suggest that nurseries try to modify growing conditions to favor good EM formation before outplanting interior Douglas-fir. Benefits of inoculations on landings may have been restricted by the poor soil conditions, potentially toxic levels of Fe and Al, and competition from well-adapted native EM fungi.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 892
Author(s):  
Valda Gudynaitė-Franckevičienė ◽  
Alfas Pliūra

To have a cleaner environment, good well-being, and improve the health of citizens it is necessary to expand green urban and suburban areas using productive and adapted material of tree species. The quality of urban greenery, resistance to negative climate change factors and pollution, as well as efficiency of short-rotation forestry in suburban areas, depends primarily on the selection of hybrids and clones, suitable for the local environmental conditions. We postulate that ecogenetic response, phenotypic plasticity, and genotypic variation of hybrid poplars (Populus L.) grown in plantations are affected not only by the peculiarities of hybrids and clones, but also by environmental conditions of their vegetative propagation. The aim of the present study was to estimate growth and biochemical responses, the phenotypic plasticity, genotypic variation of adaptive traits, and genetically regulated adaptability of Populus hybrids in field trials which may be predisposed by the simulated contrasting temperature conditions at their vegetative propagation phase. The research was performed with the 20 cultivars and experimental clones of one intraspecific cross and four different interspecific hybrids of poplars propagated under six contrasting temperature regimes in phytotron. The results suggest that certain environmental conditions during vegetative propagation not only have a short-term effect on tree viability and growth, but also can help to adapt to climate change conditions and grow successfully in the long-term. It was found that tree growth and biochemical traits (the chlorophyll A and B, pigments content and the chlorophyll A/B ratio) of hybrid poplar clones grown in field trials, as well as their traits’ genetic parameters, were affected by the rooting-growing conditions during vegetative propagation phase. Hybrids P. balsamifera × P. trichocarpa, and P. trichocarpa × P. trichocarpa have shown the most substantial changes of biochemical traits across vegetative propagation treatments in field trial. Rooting-growing conditions during vegetative propagation had also an impact on coefficients of genotypic variation and heritability in hybrid poplar clones when grown in field trials.


2014 ◽  
Vol 23 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Anna Nogalska ◽  
Lin Chen ◽  
Stanisław Sienkiewicz ◽  
Zenon Nogalski

The purpose of this study was to evaluate the effect of meat and bone meal (MBM) on cultivation of winter triticale, winter oilseed rape, winter wheat and maize. The average annual yields and protein yield achieved in crop rotation were studied. The field trials were carried out in north-eastern Poland in 2006–2010. The factor was dose of MBM: 1.0, 1.5, 2.0 and 2.5 t ha-1 year-1 or 2.0, 3.0, 4.0 and 5.0 t ha-1 every other year. The four-year experiment has proven that MBM is a valuable nitrogen and phosphorus fertilizer in cultivation of cereals and oilseed rape. By amendment of the tested meal into the soil it produced crop yield and protein yield similar to that achieved by mineral fertilization. However, the crude fat yield of rape was significantly higher under the influence of all the MBM doses. The yield-stimulating effect of MBM did not depend on the frequency of its application; therefore it is more convenient to apply it once every two years. Increasing MBM from 1.5 to 2.5 t ha-1 did not significantly increase any of the four crop yields, therefore for soils that had satisfactory nutrients content, 1 or 1.5 t ha-1 MBM is enough and increasing MBM will only increase economic burden for farmers and environmental risks.


2021 ◽  
Author(s):  
Germano MF Costa-Neto ◽  
Jose M F Crossa ◽  
Roberto F Fritsche-Neto

Quantitative genetics states that phenotypic variation is a consequence of genetic and environmental factors and their subsequent interaction. Here, we present an enviromic assembly approach, which includes the use of ecophysiology knowledge in shaping environmental relatedness into whole-genome predictions (GP) for plant breeding (referred to as E-GP). We propose that the quality of an environment is defined by the core of environmental typologies (envirotype) and their frequencies, which describe different zones of plant adaptation. From that, we derive markers of environmental similarity cost-effectively. Combined with the traditional genomic sources (e.g., additive and dominance effects), this approach may better represent the putative phenotypic variation across diverse growing conditions (i.e., phenotypic plasticity). Additionally, we couple a genetic algorithm scheme to design optimized multi-environment field trials (MET), combining enviromic assembly and genomic kinships to provide in-silico realizations of the future genotype-environment combinations that must be phenotyped in the field. As a proof-of-concept, we highlight E-GP applications: (1) managing the lack of phenotypic information in training accurate GP models across diverse environments and (2) guiding an early screening for yield plasticity using optimized phenotyping efforts. Our approach was tested using two non-conventional cross-validation schemes to better visualize the benefits of enviromic assembly in sparse experimental networks. Results on tropical maize show that E-GP outperforms benchmark GP in all scenarios and cases tested. We show that for training accurate GP models, the genotype-environment combinations' representativeness is more critical than the MET size. Furthermore, we discuss theoretical backgrounds underlying how the intrinsic envirotype-phenotype covariances within the phenotypic records of (MET) can impact the accuracy of GP and limits the potentialities of predictive breeding approaches. The E-GP is an efficient approach to better use environmental databases to deliver climate-smart solutions, reduce field costs, and anticipate future scenarios.


2018 ◽  
Vol 156 (4) ◽  
pp. 493-503 ◽  
Author(s):  
J. Pannecoucque ◽  
S. Goormachtigh ◽  
J. Ceusters ◽  
J. Debode ◽  
C. Van Waes ◽  
...  

AbstractBacterial inoculation of soybean seeds to improve biological nitrogen fixation is a well-known practice to achieve higher seed and protein yield with reduced fertilization. The optimal inoculation strategy in temperate regions is unknown because soybeans are rarely cultivated under colder growing conditions. The aim of the present work was to determine the most suitable inoculation strategy for soybean cultivation in Belgium. Field trials were set up with four Bradyrhizobium inoculants (HiStick, Force 48, Biodoz and Optimize) at two locations over 2 years (2014–2015) and compared with a non-inoculated control treatment. In addition, HiStick was tested at three doses and Optimize at two time periods prior to sowing. Under Belgian conditions, all inoculants were effective in establishing rhizobial symbiosis, resulting in increased yield, protein content, protein yield and thousand-grain weight compared with the non-inoculated control. A single dose of HiStick was sufficient to establish symbiosis. Pre-inoculation with Optimize 2 weeks before sowing gave an intermediate performance for most parameters between the non-inoculated control treatment and inoculation with Optimize 24 h prior to sowing. Among the four products tested, Biodoz seemed the best product for inoculation under cool growing conditions. Based on the atpD gene, the bacterial strain of Biodoz showed complete similarity with Bradyrhizobium diazoefficiens, while strains of other products were identified as Bradyrhizobium japonicum. In vitro growing capacity of the Biodoz strain at 8 °C was higher compared with the other strains. Better cold adaptation of the Biodoz strain might be a possible explanation for the better performance of Biodoz in Belgium.


ce/papers ◽  
2018 ◽  
Vol 2 (2-3) ◽  
pp. 457-462
Author(s):  
Ena JAZVIN ◽  
Azra ŠPAGO
Keyword(s):  

2019 ◽  
Author(s):  
Tea Thum ◽  
Silvia Caldararu ◽  
Jan Engel ◽  
Melanie Kern ◽  
Marleen Pallandt ◽  
...  

Abstract. The dynamics of terrestrial ecosystems are shaped by the coupled cycles of carbon, nitrogen and phosphorus, and strongly depend on the availability of water and energy. These interactions shape future terrestrial biosphere responses to global change. Many process-based models of the terrestrial biosphere have been gradually extended from considering carbon-water interactions to also including nitrogen, and later, phosphorus dynamics. This evolutionary model development has hindered full integration of these biogeochemical cycles and the feedbacks amongst them. Here we present a new terrestrial ecosystem model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system), which is formulated around a consistent representation of element cycling in terrestrial ecosystems. This new model includes i) a representation of plant growth which separates source (e.g. photosynthesis) and sink (growth rate of individual tissues, constrained by nutrients, temperature, and water availability) processes; ii) the acclimation of many ecophysiological processes to meteorological conditions and/or nutrient availabilities; iii) an explicit representation of vertical soil processes to separate litter and soil organic matter dynamics; iv) a range of new diagnostics (leaf chlorophyll content; 13C, 14C, and 15N isotope tracers) to allow for a more in-depth model evaluation. We present the model structure and provide an assessment of its performance against a range of observations from global-scale ecosystem monitoring networks. We demonstrate that the framework is capable of consistently simulating ecosystem dynamics across a large gradient in climate and soil conditions, as well as across different plant functional types. To aid this understanding we provide an assessment of the model's sensitivity to its parameterisation and the associated uncertainty.


2019 ◽  
Vol 440 (1-2) ◽  
pp. 247-247
Author(s):  
Stephanie Schelfhout ◽  
An De Schrijver ◽  
Margot Vanhellemont ◽  
Pieter Vangansbeke ◽  
Safaa Wasof ◽  
...  

1990 ◽  
Vol 30 (4) ◽  
pp. 551 ◽  
Author(s):  
PG Slavich ◽  
BJ Read ◽  
BR Cullis

Five field trials to screen a range of barley germplasm for tolerance to saline soil conditions were conducted on irrigation farms in southern New South Wales, in areas affected by secondary salinisation from shallow watertables. Three trials were located on heavy grey clay soils and 2 on red-brown earth soils. An electromagnetic soil conductivity meter (EM-38) was used to quantify the salinity of individual field plots. Cultivars were compared in terms of their grain yield response to soil salinity. Yields were significantly reduced by soil salinity at all sites except 1 on red-brown earth. Both genetic and site differences in salinity response were identified. The reduction in yield per unit increase in electrical conductivity of the saturated paste (EC,), averaged across sites, varied from 4.7% for Forrest to 6.6% for Schooner. However, the yield reduction per unit increase in EC,, averaged across cultivars, varied from 4.1% in a red-brown earth to 6.4% in heavy clays.


Sign in / Sign up

Export Citation Format

Share Document