scholarly journals Interactions of Silicon With Essential and Beneficial Elements in Plants

2021 ◽  
Vol 12 ◽  
Author(s):  
Jelena Pavlovic ◽  
Ljiljana Kostic ◽  
Predrag Bosnic ◽  
Ernest A. Kirkby ◽  
Miroslav Nikolic

Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).

2010 ◽  
Vol 192 (18) ◽  
pp. 4752-4762 ◽  
Author(s):  
Christopher E. Wozniak ◽  
Fabienne F. V. Chevance ◽  
Kelly T. Hughes

ABSTRACT In Salmonella, there are three classes of promoters in the flagellar transcriptional hierarchy. This organization allows genes needed earlier in the construction of flagella to be transcribed before genes needed later. Four operons (fliAZY, flgMN, fliDST, and flgKL) are expressed from both class 2 and class 3 promoters. To investigate the purpose for expressing genes from multiple flagellar promoters, mutants were constructed for each operon that were defective in either class 2 transcription or class 3 transcription. The mutants were checked for defects in swimming through liquids, swarming over surfaces, and transcriptional regulation. The expression of the hook-associated proteins (FlgK, FlgL, and FliD) from class 3 promoters was found to be important for swarming motility. Both flgMN promoters were involved in coordinating class 3 transcription with the stage of assembly of the hook-basal body. Finally, the fliAZY class 3 promoter lowered class 3 transcription in stationary phase. These results indicate that the multiple flagellar promoters respond to specific environmental conditions and help coordinate transcription with flagellar assembly.


2019 ◽  
Vol 32 (5) ◽  
pp. 593-607 ◽  
Author(s):  
Guangchao Sun ◽  
Xiaobo Qi ◽  
Richard A. Wilson

Appressoria are important mediators of plant–microbe interactions. In the devastating rice blast pathogen Magnaporthe oryzae, appressorial morphogenesis from germ tube tips requires activated cAMP/PKA signaling and inactivated TOR signaling (TORoff). TORoff temporarily arrests G2 at a metabolic checkpoint during the single round of mitosis that occurs following germination. G2 arrest induces autophagy and appressorium formation concomitantly, allowing reprogression of the cell cycle to G1/G0 quiescence and a single appressorial nucleus. Inappropriate TOR activation abrogates G2 arrest and inhibits cAMP/PKA signaling downstream of cPKA. This results in multiple rounds of germ tube mitosis and the loss of autophagy and appressoria formation. How cAMP/PKA signaling connects to cell cycle progression and autophagy is not known. To address this, we interrogated TOR and cAMP/PKA pathways using signaling mutants, different surface properties, and specific cell cycle inhibitors and discovered a feed-forward subnetwork arising from TOR- and cAMP/PKA-signaling integration. This adenylate cyclase-cAMP-TOR-adenylate cyclase subnetwork reinforces cAMP/PKA-dependent appressorium formation under favorable environmental conditions. Under unfavorable conditions, the subnetwork collapses, resulting in reversible cell cycle-mediated germ tube growth regardless of external nutrient status. Collectively, this work provides new molecular insights on germ tube morphogenetic decision-making in response to static and dynamic environmental conditions.


2021 ◽  
Vol 9 (3) ◽  
pp. 10-22
Author(s):  
S. Appasmandri ◽  

Among the basic needs of life, food possesses ahead of everyone else as it nourishes us and able to stand which leads further activity. Tamil Nadu state is self-sufficient in food production and Nutrient availability assessment also shows the same but the consumption pattern shows inverse pattern to availability because consumption is directly related with income, education, taste and preference, cultural, ethical and etc. Food consumption patterns of rural Tamil Nadu shows that high demand of Public Distribution System (PDS) observed in earlier and gradually decreased over year. Vitamin Thiamine is coming under severe inequality category in rural areas of Tamil Nadu for both 61st and 68 rounds. Goal programming was effectively optimised the nutrient requirement with least cost and optimised to higher level of nutrient status.


2017 ◽  
Vol 9 (1) ◽  
pp. 55-59
Author(s):  
Dilpreet Talwar ◽  
Kulbir Singh ◽  
Jagdish Singh

Biofertilizers improves the soil microbial content, Soil nutrient status and nutrient uptake by plant. In an experiment, fifteen treatments comprised of various combinations of biofertilizers, organic manures and chemical fertilizers were compared to access the impact of different sources of nutrient on performance of onion. The highest soil organic carbon (0.40%) was observed in the treatments T12 (Farm Yard Manure (FYM) @ 20 t/ha) and T11 (FYM myctes count (29.9 X 104) was recorded in T11 (FYM @ 20 t/ha + Azotobacter + VAM) treatment while highest fungal @ 20 t/ha + Azotobacter + Vesicular-Arbuscular Mycorrhizae (VAM)). Highest bacterial (24.5 X 106) and actino-count (17.5 X 103) was observed in T3 (Azospirillium+ Recommended dose of NPK) treatment. At the time of harvesting, available nitrogen (N), available phosphorus (P) and available potassium (K) were higher in treatment T3 (Azospirillium + Recommended dose of NPK), T9 (Azotobacter+ VAM + Recommended dose of NPK) and T13 (Poultry treatment (162.6 Kg ha-1) as compared to all other treatments except T1 and T9 treatments while P uptake (13.6 Kg ha-Manure @ 5t/ha) treatments respectively than that in other treatments. Azospirillum and Azotobacter application along with recommended dose of N, P and K improved the fertility status of soil. The N uptake was significantly higher in T3 treatments. The present study highlights the need of use of biofertilizers along with organic and inorganic 1) was significantly higher in T9 treatment than that in other treatments except T1, T3, T5 and T7 treatments. The K uptake was significantly higher in T3 treatment (126.9 Kg ha-1) as compare to all other treatments except T1 and T9 manures/fertilizer to enhance the nutrient availability and improve soil health.


2021 ◽  
Author(s):  
Andreu Cera ◽  
Estephania Duplat ◽  
Gabriel Montserrat-Martí ◽  
Antonio Gómez-Bolea ◽  
Susana Rodríguez-Echeverría ◽  
...  

Abstract Aims Gypsum soils are P-limited atypical soils that harbour a rich endemic flora. These singular soils are usually found in drylands, where plant activity and soil nutrient availability are seasonal. No previous studies have analysed the seasonality of P nutrition and its interaction with the arbuscular mycorrhiza fungi (AMF) colonisation in gypsum plants. Our aim was to evaluate the seasonal changes in plant nutrient status, AMF colonisation and rhizospheric soil nutrient availability in gypsum specialist and generalist species. Methods We evaluated seasonal variation in the proportion of root length colonised by AMF structures (hyphae, vesicules and arbuscules), plant nutrient status (leaf C, N and P and fine root C and N) and rhizospheric soil content (P, organic matter, nitrate and ammonium) of three gypsum specialists and two generalists throughout a year. Results All species showed arbuscules within roots, including species of Caryophyllaceae and Brassicaceae. Root colonisation by arbuscules (AC) was higher in spring than in other seasons, when plants showed high leaf P-requirements. Higher AC was decoupled from inorganic N and P availability in rhizospheric soil, and foliar nutrient content. Generalists showed higher AC than specialists, but only in spring. Conclusions Seasonality was found in AMF colonisation, rhizospheric soil content and plant nutrient status. The mutualism between plants and AMF was highest in spring, when P-requirements are higher for plants, especially in generalists. However, AMF decoupled from plant demands in autumn, when nutrient availability increases in rhizospheric soil.


2012 ◽  
Vol 39 (No. 2) ◽  
pp. 67-73 ◽  
Author(s):  
Ž. Karaklajić-Stajić ◽  
I.S. Glišić ◽  
Dj. Ružić ◽  
T. Vujović ◽  
M. Pešaković

Raspberry (Rubus idaeus L.) cultivar Willamette has long been the most commonly grown raspberry cultivar in Serbia, which is owing to high adaptability of the cultivar to respective agro-environmental conditions. Massive dieback of full bearing plantings is a major problem in raspberry growing hence quality planting material is a must when establishing new raspberry plantings. The study was conducted under protected conditions (in screenhouse) on plants obtained by micropropagation in vitro. In order to achieve optimal vegetative potential, plants were grown for two consecutive years (2004–2005) on two substrates (Steckmedium and Seedling) using three foliar fertilizers (Wuxal, Murtonik and Ferticare). The study revealed optimal vegetative growth in plants studied, excess manganese (150.60-214.52 mg/g), optimum iron content (94.00-123.50 mg/g), and zinc (28.60-31.00 mg/g) and copper (3.10-4.00 mg/g) deficiencies, based on the referent values of microelements content. The assessment of nutritional status of plants by the DOP index suggested significant differences in microelements imbalance when different foliar fertilizers and substrates are applied.


1995 ◽  
Vol 15 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Peter G. Blake

Objective To review the normal function of the growth hormone (GH) insulin-like growth factor (IGF) axis, how it is altered in end-stage renal failure, how this may contribute to malnutrition in dialysis patients, and how therapy with recombinant human growth hormone (rHuGH) and recombinant human IGF-I (rHuIGF-1)might be used to treat malnutrition in these patients. Data Sources Studies in the literature dealing with the GH-IGF endocrine axis and its role in uremic malnutrition. Study Selection Eight studies in which uremic adults were treated with either rHuGH or rHuIGF-I. Data Extraction Data were abstracted from all of these studies. Results The review shows that there are marked abnormalities of the GH-IGF axis in uremic patients and that these lead to a state of GH resistance, which can be overcome by pharmacological doses of rHuGH. A small number of clinical studies in uremic adults suggests that both rHuGH and rHuIGF-I have dramatic beneficial effects on nutritional status in these patients. Conclusions rHuGH and rHuIGF-I have both been shown to have a beneficial effect on nutritional status in shortterm studies on small numbers of patients. Further studies need to be done for longer periods in larger groups of patients. Areas for additional research are suggested.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1042 ◽  
Author(s):  
Maria Luce Bartucca ◽  
Daniele Del Buono ◽  
Eleonora Ballerini ◽  
Paolo Benincasa ◽  
Beatrice Falcinelli ◽  
...  

The use of Light Emitting Diode (LED) lights in microscale vegetable production is more and more widespread. In this context, the effect of light spectrum on photosynthesis, growth, shoot yield, pigment content, and nutritional status of einkorn seedlings (Triticum monococcum L. ssp. monococcum), germinated and grown in a nutrient solution, was investigated. Plants were subjected to six different LED light treatments, all having a photon flux density (PFD) of 200 μmol m−2 s−1. Two light treatments were monochromatic (red or blue), three dichromatic (blue and red in the proportion), and one of a wider spectrum (selected as a control). All the light treatments affected the morphological, biochemical, and nutritional status of einkorn seedlings. Overall, the dichromatic treatments were the most effective in stimulating biomass production, CO2 assimilation, and evapotranspiration, as well as contents in chlorophyll a and b and carotenoids, and additionally nitrogen, phosphorous, manganese, iron, and zinc. These results are of relevance for the beneficial effects of dichromatic LED treatments in maximizing einkorn shoot yield and nutritional values, and in limiting energy consumption in indoor cultivation.


Sign in / Sign up

Export Citation Format

Share Document