scholarly journals Current Perspectives on Reducing the β-ODAP Content and Improving Potential Agronomic Traits in Grass Pea (Lathyrus sativus L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Arpita Das ◽  
Ashok K. Parihar ◽  
Surendra Barpete ◽  
Shiv Kumar ◽  
Sanjeev Gupta

Grass pea is well-established as one of the most resilient and versatile crops that can thrive under extreme climatic circumstances such as cold, heat, drought, salt-affected soils, submergence, and excessive rainfall along with resistance to several diseases and pests. However, despite the awareness of its virtues, its cultivation globally has decreased recently owing to the presence of a neurotoxin, β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP), in the seedlings and seeds of this legume, which has been reported to cause neurolathyrism, a non-reversible neurological disorder in humans and animals. Significant repositories of Lathyrus germplasm are available across countries that have provided access to a wide range of agro-morphological traits as well as the low β ODAP content. Efforts have been made worldwide to use these germplasms for the genetic enhancement of grass pea to make this food safe for human consumption. Efforts on molecular breeding of this crop are also lagging. However, during the last decade, the research scenario has changed with some efforts being made toward improving this climate resilient pulse in terms of genomic resources. Molecular markers have also been used to evaluate the interspecific diversity as well as the phylogenetic relationship among the species and mapping studies. Intron-targeted amplified polymorphic, genomic simple sequence repeat, resistance genes analogs, and disease resistance markers developed for other legume species have been successfully cross-amplified in grass pea. Transcriptomic studies have recently been undertaken on grass pea by deploying several second-generation sequencing techniques. In addition, a few studies have attempted to unveil the genes and the underlying mechanism conferring biotic and abiotic stress or regulating the pathway of β-ODAP in grass pea. Proteomics has accelerated the identification studies on differential proteomes in response to salinity and low-temperature stress conditions for unveiling the common signaling pathways involved in mitigating these abiotic stresses and in discovering differentially regulated proteins. In grass pea, a metabolomics approach has been used to identify the metabolic processes associated with β-ODAP synthesis. Genome sequencing of grass pea is under way which is expected to be vital for whole-genome re-sequencing and gene annotation toward the identification of genes with novel functions. Recently, a draft genome sequence of grass pea was developed, and some efforts are underway to re-sequence a diverse panel of grass pea comprising 384 germplasm lines. Owing to the scantiness of a successful transformation protocol, research on the application of modern approaches of genome editing like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) or CRISPR-associated protein 9 (CRISPR/Cas9) system for the engineering of signaling pathways or regulatory mechanisms seeks immediate attention to reduce the β-ODAP content in seeds and to improve the potential agronomic traits in grass pea.

2020 ◽  
Vol 21 (2) ◽  
Author(s):  
Lovro Sinkovič ◽  
Barbara Pipan ◽  
Marina Antić ◽  
Vida Todorović ◽  
Sonja Rašeta ◽  
...  

Grass pea belongs to the legume family and it is traditionally used as a grain for human consumption while its foliage is used for fodder. In this study morpho-agronomic evaluation and characterisation of different grass pea accessions (Lathyrus sativus L.) from Slovenia and Bosnia and Herzegovina (BiH)/Republic of Srpska was performed. A collection of 8 grass pea accessions was cultivated in Slovenia (Jablje) and Bosnia and Herzegovina/Republic of Srpska (Banja Luka) in the open field trials during the growing season of 2019. A number of quantitative and qualitative IPGRI descriptors for Lathyrus spp. concerning the vegetative growth, stem, branch, leaf, inflorescences, pods, and seeds were measured and/or visually estimated. The results of the present study will add value through the enrichment of the Lathyrus spp. collection in both countries, improving the existing data and documentation, as well as creating a certain basis for further studies of the morpho-agronomic traits of the grass pea.


Author(s):  
Lida Eftekharivash ◽  
Javad Hamedi

Background and Objectives: Streptomyces tendae is one of the most prolific actinobacteria with a wide range of biotechnological applications. Genomic data can help in better understanding and exploration of important microorganisms, however, there is a few genomic information available for this species. Materials and Methods: Molecular identification, pH and salt tolerance of an actinobacterium, designated Streptomyces tendae UTMC 3329, isolated from a tea field soil were done. Also, genomic DNA was extracted and sequenced using Illumina platform with MPS (massively parallel sequencing) Illumina technology. Gene annotation and bioinformatic analysis were done using appropriate software and servers. Results: The draft genome is ~8.7 megabase pairs, containing 7557 predicted coding sequences. The strain was able to grow at pH 5-12 and 0-10% NaCl. The maximum growth rate of the bacterium was obtained at pH 7. The gene clusters involved in central carbon metabolism, phosphate regulation, transport system, stress responses were revealed. It was shown the presence of gene clusters of polyketides, ribosomally and non-ribosomally synthesized peptides. Various genes were found in xenobiotic degradation pathways and heavy metal resistance. Conclusion: The current genomic information which reveals biological features, as well as the biotechnological potential of this acid and alkaline tolerant actinobacterium, can be implemented for further research on the species.


Epigenomics ◽  
2020 ◽  
Author(s):  
Qijie Zhao ◽  
Jinan Guo ◽  
Yueshui Zhao ◽  
Jing Shen ◽  
Parham Jabbarzadeh Kaboli ◽  
...  

Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/ PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.


2021 ◽  
Vol 22 (11) ◽  
pp. 5722
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Cinzia Marinaro ◽  
Claudio Curci ◽  
Marco Invernizzi ◽  
...  

Osteoarthritis (OA) is a painful and disabling disease that affects millions of patients. Its etiology is largely unknown, but it is most likely multifactorial. OA pathogenesis involves the catabolism of the cartilage extracellular matrix and is supported by inflammatory and oxidative signaling pathways and marked epigenetic changes. To delay OA progression, a wide range of exercise programs and naturally derived compounds have been suggested. This literature review aims to analyze the main signaling pathways and the evidence about the synergistic effects of these two interventions to counter OA. The converging nutrigenomic and physiogenomic intervention could slow down and reduce the complex pathological features of OA. This review provides a comprehensive picture of a possible signaling approach for targeting OA molecular pathways, initiation, and progression.


2021 ◽  
Vol 22 (9) ◽  
pp. 4546
Author(s):  
Shiyao Chen ◽  
Yunqi Liu ◽  
Huchen Zhou

Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Suzanne V Saenko ◽  
Dick S J Groenenberg ◽  
Angus Davison ◽  
Menno Schilthuizen

Abstract Studies on the shell color and banding polymorphism of the grove snail Cepaea nemoralis and the sister taxon Cepaea hortensis have provided compelling evidence for the fundamental role of natural selection in promoting and maintaining intraspecific variation. More recently, Cepaea has been the focus of citizen science projects on shell color evolution in relation to climate change and urbanization. C. nemoralis is particularly useful for studies on the genetics of shell polymorphism and the evolution of “supergenes,” as well as evo-devo studies of shell biomineralization, because it is relatively easily maintained in captivity. However, an absence of genomic resources for C. nemoralis has generally hindered detailed genetic and molecular investigations. We therefore generated ∼23× coverage long-read data for the ∼3.5 Gb genome, and produced a draft assembly composed of 28,537 contigs with the N50 length of 333 kb. Genome completeness, estimated by BUSCO using the metazoa dataset, was 91%. Repetitive regions cover over 77% of the genome. A total of 43,519 protein-coding genes were predicted in the assembled genome, and 97.3% of these were functionally annotated from either sequence homology or protein signature searches. This first assembled and annotated genome sequence for a helicoid snail, a large group that includes edible species, agricultural pests, and parasite hosts, will be a core resource for identifying the loci that determine the shell polymorphism, as well as in a wide range of analyses in evolutionary and developmental biology, and snail biology in general.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eugenio Azpeitia ◽  
Eugenio P. Balanzario ◽  
Andreas Wagner

Abstract Background All living systems acquire information about their environment. At the cellular level, they do so through signaling pathways. Such pathways rely on reversible binding interactions between molecules that detect and transmit the presence of an extracellular cue or signal to the cell’s interior. These interactions are inherently stochastic and thus noisy. On the one hand, noise can cause a signaling pathway to produce the same response for different stimuli, which reduces the amount of information a pathway acquires. On the other hand, in processes such as stochastic resonance, noise can improve the detection of weak stimuli and thus the acquisition of information. It is not clear whether the kinetic parameters that determine a pathway’s operation cause noise to reduce or increase the acquisition of information. Results We analyze how the kinetic properties of the reversible binding interactions used by signaling pathways affect the relationship between noise, the response to a signal, and information acquisition. Our results show that, under a wide range of biologically sensible parameter values, a noisy dynamic of reversible binding interactions is necessary to produce distinct responses to different stimuli. As a consequence, noise is indispensable for the acquisition of information in signaling pathways. Conclusions Our observations go beyond previous work by showing that noise plays a positive role in signaling pathways, demonstrating that noise is essential when such pathways acquire information.


2002 ◽  
Vol 85 (3) ◽  
pp. 762-767 ◽  
Author(s):  
Graham Brookes

Abstract The use of the technology of genetic modification (GM) in European agriculture and the food supply chain is currently controversial. Because of strong anti-GM technology sentiments, the use of ingredients derived from plants containing GM have largely been eliminated from foods manufactured for direct human consumption by the food supply chain in much of the European Union (EU). During the past year, the attention of those opposed to the technology has turned to the use of GM ingredients in livestock production systems by incorporation of GM soy and maize in animal feed. A discussion is presented of the key issues relating to this subject, focusing on how supplies of GM or non-GM products are segregated or how their identities are preserved. The discussion is centered on GM maize and soybeans into which agronomic traits, such as herbicide tolerance and/or insect resistance, have been incorporated. These are currently the only crops into which some varieties containing GM have been approved for use in the EU.


2017 ◽  
Vol 13 ◽  
pp. 2138-2145 ◽  
Author(s):  
Joana M Pais ◽  
Maria João Barroca ◽  
Maria Paula M Marques ◽  
Filipe A Almeida Paz ◽  
Susana S Braga

Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD), a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD), Raman, infrared and 13C{1H} CP-MAS NMR spectroscopies, and thermal analysis (TGA) to verify fisetin inclusion and to present a hypothetical structural arrangement for the host–guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.


2018 ◽  
Vol 6 (22) ◽  
Author(s):  
Jin-Ju Jeong ◽  
Hyeon-Ji Moon ◽  
Duleepa Pathiraja ◽  
Byeonghyeok Park ◽  
In-Geol Choi ◽  
...  

ABSTRACT Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 from stored rice grains exhibited antifungal activity against Aspergillus and Penicillium spp. predominant in stored rice. Here, we report their bacterial draft genomes, which contain genes related to biotic and abiotic stress management, as well as antimicrobial and insecticidal traits.


Sign in / Sign up

Export Citation Format

Share Document