scholarly journals Hypoxic Transformation of Immune Cell Metabolism Within the Microenvironment of Oral Cancers

2020 ◽  
Vol 1 ◽  
Author(s):  
Amrita Chaudhary ◽  
Swarnendu Bag ◽  
Neeraj Arora ◽  
Vivek S. Radhakrishnan ◽  
Deepak Mishra ◽  
...  

Oral squamous cell carcinoma (OSCC) includes tumors of the lips, tongue, gingivobuccal complex, and floor of the mouth. Prognosis for OSCC is highly heterogeneous, with overall 5-year survival of ~50%, but median survival of just 8–10 months for patients with locoregional recurrence or metastatic disease. A key feature of OSCC is microenvironmental oxygen depletion due to rapid growth of constituent tumor cells, which triggers hypoxia-associated signaling events and metabolic adaptations that influence subsequent tumor progression. Better understanding of leukocyte responses to tissue hypoxia and onco-metabolite expression under low-oxygen conditions will therefore be essential to develop more effective methods of diagnosing and treating patients with OSCC. This review assesses recent literature on metabolic reprogramming, redox homeostasis, and associated signaling pathways that mediate crosstalk of OSCC with immune cells in the hypoxic tumor microenvironment. The likely functional consequences of this metabolic interface between oxygen-starved OSCC and infiltrating leukocytes are also discussed. The hypoxic microenvironment of OSCC modifies redox signaling and alters the metabolic profile of tumor-infiltrating immune cells. Improved understanding of heterotypic interactions between host leukocytes, tumor cells, and hypoxia-induced onco-metabolites will inform the development of novel theranostic strategies for OSCC.

2018 ◽  
Vol 14 (2) ◽  
pp. 20170783 ◽  
Author(s):  
Gustav van Niekerk ◽  
Megan Mitchell ◽  
Anna-Mart Engelbrecht

Activation of the immune system is associated with an increase in the breakdown of various peripheral tissues, including bone. Despite the widely appreciated role of inflammatory mediators in promoting bone resorption, the functional value behind this process is not completely understood. Recent advances in the field of immunometabolism have highlighted the metabolic reprogramming that takes place in activated immune cells. It is now believed that the breakdown of peripheral tissue provides metabolic substrates to fuel metabolic anabolism in activated immune cells. We argue that phosphate, liberated by bone resorption, plays an indispensable role in sustaining immune cell metabolism. The liberated phosphate is then incorporated into macromolecules such as nucleotides and phospholipids, and is also used for the phosphorylation of metabolites (e.g. glycolytic intermediates). In addition, magnesium, also liberated during the breakdown of bone, is an essential cofactor required by various metabolic enzymes which are upregulated in activated immune cells. Finally, calcium activates various additional molecules involved in immune cell migration. Taken together, these factors suggest a key role for bone resorption during infection.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Katrin Schlie ◽  
Jaeline E. Spowart ◽  
Luke R. K. Hughson ◽  
Katelin N. Townsend ◽  
Julian J. Lum

Hypoxia is a signature feature of growing tumors. This cellular state creates an inhospitable condition that impedes the growth and function of all cells within the immediate and surrounding tumor microenvironment. To adapt to hypoxia, cells activate autophagy and undergo a metabolic shift increasing the cellular dependency on anaerobic metabolism. Autophagy upregulation in cancer cells liberates nutrients, decreases the buildup of reactive oxygen species, and aids in the clearance of misfolded proteins. Together, these features impart a survival advantage for cancer cells in the tumor microenvironment. This observation has led to intense research efforts focused on developing autophagy-modulating drugs for cancer patient treatment. However, other cells that infiltrate the tumor environment such as immune cells also encounter hypoxia likely resulting in hypoxia-induced autophagy. In light of the fact that autophagy is crucial for immune cell proliferation as well as their effector functions such as antigen presentation and T cell-mediated killing of tumor cells, anticancer treatment strategies based on autophagy modulation will need to consider the impact of autophagy on the immune system.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5447
Author(s):  
Maria Iorio ◽  
Nikkitha Umesh Ganesh ◽  
Monica De Luise ◽  
Anna Maria Porcelli ◽  
Giuseppe Gasparre ◽  
...  

Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known


2006 ◽  
Vol 85 (12) ◽  
pp. 1061-1073 ◽  
Author(s):  
A. Jewett ◽  
C. Head ◽  
N.A. Cacalano

Mounting effective anti-tumor immune responses against tumors by both the innate and adaptive immune effectors is important for the clearance of tumors. However, accumulated evidence indicates that immune responses that should otherwise suppress or eliminate transformed cells are themselves suppressed by the function of tumor cells in a variety of cancer patients, including those with oral cancers. Signaling abnormalities, spontaneous apoptosis, and reduced proliferation and function of circulating natural killer cells (NK), T-cells, dendritic cells (DC), and tumor-infiltrating lymphocytes (TILs) have been documented previously in oral cancer patients. Several mechanisms have been proposed for the functional deficiencies of tumor-associated immune cells in oral cancer patients. Both soluble factors and contact-mediated immunosuppression by the tumor cells have been implicated in the inhibition of immune cell function and the progression of tumors. More recently, elevated levels and function of key transcription factors in tumor cells, particularly NFκB and STAT3, have been shown to mediate immune suppression in the tumor microenvironment. This review will focus on these emerging mechanisms of immunosuppression in oral cancers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Javier Traba ◽  
Michael N. Sack ◽  
Thomas A. Waldmann ◽  
Olga M. Anton

Constitutive activity of the immune surveillance system detects and kills cancerous cells, although many cancers have developed strategies to avoid detection and to resist their destruction. Cancer immunotherapy entails the manipulation of components of the endogenous immune system as targeted approaches to control and destroy cancer cells. Since one of the major limitations for the antitumor activity of immune cells is the immunosuppressive tumor microenvironment (TME), boosting the immune system to overcome the inhibition provided by the TME is a critical component of oncotherapeutics. In this article, we discuss the main effects of the TME on the metabolism and function of immune cells, and review emerging strategies to potentiate immune cell metabolism to promote antitumor effects either as monotherapeutics or in combination with conventional chemotherapy to optimize cancer management.


2021 ◽  
Vol 10 ◽  
Author(s):  
Shaojie Wu ◽  
Huixian Kuang ◽  
Jin Ke ◽  
Manfei Pi ◽  
Dong-Hua Yang

Tumor cells rewire metabolism to meet their increased nutritional demands, allowing the maintenance of tumor survival, proliferation, and expansion. Enhancement of glycolysis and glutaminolysis is identified in most, if not all cancers, including multiple myeloma (MM), which interacts with a hypoxic, acidic, and nutritionally deficient tumor microenvironment (TME). In this review, we discuss the metabolic changes including generation, depletion or accumulation of metabolites and signaling pathways, as well as their relationship with the TME in MM cells. Moreover, we describe the crosstalk among metabolism, TME, and changing function of immune cells during cancer progression. The overlapping metabolic phenotype between MM and immune cells is discussed. In this sense, targeting metabolism of MM cells is a promising therapeutic approach. We propose that it is important to define the metabolic signatures that may regulate the function of immune cells in TME in order to improve the response to immunotherapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Huimin Mao ◽  
Andi Yang ◽  
Yunhe Zhao ◽  
Lang Lei ◽  
Houxuan Li

Most mesenchymal stem cells reside in a niche of low oxygen tension. Iron-chelating agents such as CoCl2 and deferoxamine have been utilized to mimic hypoxia and promote cell growth. The purpose of the present study was to explore whether a supplement of succinate, a natural metabolite of the tricarboxylic acid (TCA) cycle, can mimic hypoxia condition to promote human periodontal ligament cells (hPDLCs). Culturing hPDLCs in hypoxia condition promoted cell proliferation, migration, and osteogenic differentiation; moreover, hypoxia shifted cell metabolism from oxidative phosphorylation to glycolysis with accumulation of succinate in the cytosol and its release into culture supernatants. The succinate supplement enhanced hPDLC proliferation, migration, and osteogenesis with decreased succinate dehydrogenase (SDH) expression and activity, as well as increased hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), suggesting metabolic reprogramming from oxidative phosphorylation to glycolysis in a normal oxygen condition. The succinate supplement in cell cultures promoted intracellular succinate accumulation while stabilizing hypoxia inducible factor-1α (HIF-1α), leading to a state of pseudohypoxia. Moreover, we demonstrate that hypoxia-induced proliferation was G-protein-coupled receptor 91- (GPR91-) dependent, while exogenous succinate-elicited proliferation involved the GPR91-dependent and GPR91-independent pathway. In conclusion, the succinate supplement altered cell metabolism in hPDLCs, induced a pseudohypoxia condition, and enhanced proliferation, migration, and osteogenesis of mesenchymal stem cells in vitro.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 104 ◽  
Author(s):  
Charlotte Domblides ◽  
Lydia Lartigue ◽  
Benjamin Faustin

The metabolic reprogramming of tumor cells and immune escape are two major hallmarks of cancer cells. The metabolic changes that occur during tumorigenesis, enabling survival and proliferation, are described for both solid and hematological malignancies. Concurrently, tumor cells have deployed mechanisms to escape immune cell recognition and destruction. Additionally, therapeutic blocking of tumor-mediated immunosuppression has proven to have an unprecedented positive impact in clinical oncology. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune signaling through both the release of signaling molecules and the expression of immune membrane ligands. Here, we review these molecular events to highlight the contribution of cancer cell metabolic reprogramming on the shaping of the antitumor immune response.


2021 ◽  
Vol 22 (11) ◽  
pp. 5703
Author(s):  
Vittoria Infantino ◽  
Anna Santarsiero ◽  
Paolo Convertini ◽  
Simona Todisco ◽  
Vito Iacobazzi

In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii365-iii365
Author(s):  
Vidyalakshmi Chandramohan ◽  
Tyler Evangelous ◽  
Eric S Lipp ◽  
Bhavna Hora ◽  
Darell D Bigner ◽  
...  

Abstract BACKGROUND Pediatric glioblastoma (pGBM), despite being relatively rare (incidence rate: 0.5/100,000), are a leading cause of cancer deaths in children with a median overall survival of 9–15 months. In recent years, immunotherapy has emerged as one of the more promising advances in oncology, with impressive response rates reported in several malignancies. Effective application of immunotherapy in brain tumors depends upon a better understanding of the immune cell phenotype and mechanisms of immunosuppression in these tumors. This understanding will allow for the selection of patient population who are most likely to benefit from immunotherapeutic approaches. MATERIAL AND METHODS In order to determine the frequency, distribution, and phenotype of tumor-infiltrating immune cells in pGBMs, we undertook an immunohistochemical survey on 19 recurrent pGBMs for CD3, CD8, CD4, CD163, PD-1, PD-L1, and FoxP3; RNA-Seq was also performed on a subset of 9 cases. Distribution of lymphocytes (LYMPHS) was recorded as intratumoral (IT) or perivascular (PV). RESULTS The analysis indicates intratumoral CD3+ LYMPHS are commonly <5% of tumor cell mass; however, approximately half (10/19) of these recurrent pGBM have infiltrates that range from 5 to 30% CD3+ LYMPHS. Of these, 4/10 CD3+ tumors exhibit brisk CD8+ infiltrates that are associated with PD-L1+ tumor cells. These tumors with brisk CD3+/CD8+ LYMPHS and PD-L1+ tumor cells were associated with longer survivals. The data were confirmed by RNA-seq analysis. CONCLUSION PD-L1+ pGBMs associated with CD3+/CD8+ LYMPH infiltrates deserve further investigation as candidates for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document