scholarly journals Bone resorption: supporting immunometabolism

2018 ◽  
Vol 14 (2) ◽  
pp. 20170783 ◽  
Author(s):  
Gustav van Niekerk ◽  
Megan Mitchell ◽  
Anna-Mart Engelbrecht

Activation of the immune system is associated with an increase in the breakdown of various peripheral tissues, including bone. Despite the widely appreciated role of inflammatory mediators in promoting bone resorption, the functional value behind this process is not completely understood. Recent advances in the field of immunometabolism have highlighted the metabolic reprogramming that takes place in activated immune cells. It is now believed that the breakdown of peripheral tissue provides metabolic substrates to fuel metabolic anabolism in activated immune cells. We argue that phosphate, liberated by bone resorption, plays an indispensable role in sustaining immune cell metabolism. The liberated phosphate is then incorporated into macromolecules such as nucleotides and phospholipids, and is also used for the phosphorylation of metabolites (e.g. glycolytic intermediates). In addition, magnesium, also liberated during the breakdown of bone, is an essential cofactor required by various metabolic enzymes which are upregulated in activated immune cells. Finally, calcium activates various additional molecules involved in immune cell migration. Taken together, these factors suggest a key role for bone resorption during infection.

Author(s):  
Karan Kohli ◽  
Venu G. Pillarisetty ◽  
Teresa S. Kim

AbstractImmune cell infiltration into solid tumors, their movement within the tumor microenvironment (TME), and interaction with other immune cells are controlled by their directed migration towards gradients of chemokines. Dysregulated chemokine signaling in TME favors the growth of tumors, exclusion of effector immune cells, and abundance of immunosuppressive cells. Key chemokines directing the migration of immune cells into tumor tissue have been identified. In this review, we discuss well-studied chemokine receptors that regulate migration of effector and immunosuppressive immune cells in the context of cancer immunology. We discuss preclinical models that have described the role of respective chemokine receptors in immune cell migration into TME and review preclinical and clinical studies that target chemokine signaling as standalone or combination therapies.


2020 ◽  
Vol 1 ◽  
Author(s):  
Amrita Chaudhary ◽  
Swarnendu Bag ◽  
Neeraj Arora ◽  
Vivek S. Radhakrishnan ◽  
Deepak Mishra ◽  
...  

Oral squamous cell carcinoma (OSCC) includes tumors of the lips, tongue, gingivobuccal complex, and floor of the mouth. Prognosis for OSCC is highly heterogeneous, with overall 5-year survival of ~50%, but median survival of just 8–10 months for patients with locoregional recurrence or metastatic disease. A key feature of OSCC is microenvironmental oxygen depletion due to rapid growth of constituent tumor cells, which triggers hypoxia-associated signaling events and metabolic adaptations that influence subsequent tumor progression. Better understanding of leukocyte responses to tissue hypoxia and onco-metabolite expression under low-oxygen conditions will therefore be essential to develop more effective methods of diagnosing and treating patients with OSCC. This review assesses recent literature on metabolic reprogramming, redox homeostasis, and associated signaling pathways that mediate crosstalk of OSCC with immune cells in the hypoxic tumor microenvironment. The likely functional consequences of this metabolic interface between oxygen-starved OSCC and infiltrating leukocytes are also discussed. The hypoxic microenvironment of OSCC modifies redox signaling and alters the metabolic profile of tumor-infiltrating immune cells. Improved understanding of heterotypic interactions between host leukocytes, tumor cells, and hypoxia-induced onco-metabolites will inform the development of novel theranostic strategies for OSCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalia Kunz ◽  
Claudia Kemper

The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.


Author(s):  
Mohammad Javad Fattahi ◽  
Mohammad Reza Haghshenas ◽  
Abbas Ghaderi

Abstract: The initiation and progression of bladder cancer (BC), is dependent on its tumor microenvironment (TME). On the other hand, cancer cells shape and train TME to support their development, respond to treatment and migration in an organism. Immune cells exert key roles in the BC microenvironment and have complex interactions with BC cells. These complicated interplays result in metabolic competition in the TME leading to nutrient deprivation, acidosis, hypoxia and metabolite accumulation, which impair immune cell function. Recent studies have demonstrated that immune cells functions are closely correlated with their metabolism. Immunometabolism describes the functional metabolic alterations that take place within immune cells and the role of these cells in directing metabolism and immune response in tissues or diseases such as cancer. Some molecules and their metabolites in the TME including glucose, fatty acids and amino acids can regulate the phenotype, function and metabolism of immune cells. Hence, here we describe some recent advances in immunometabolism and relate them to BC progression. A profound understanding of the metabolic reprogramming of BC cells and immune cells in the TME will offer novel opportunities for targeted therapies in future.


2021 ◽  
Vol 134 (21) ◽  

ABSTRACT Tim Lämmermann studied molecular medicine at the Friedrich-Alexander-University, Erlangen-Nuremberg, Germany and the Lund University, Sweden. He then joined the lab of Michael Sixt at the Max Planck Institute of Biochemistry in Martinsried, where he earned his PhD in 2009 for studying the role of integrins and cytoskeletal forces in immune cell migration. Tim then moved to the National Institute of Allergy and Infectious Diseases in Bethesda, USA for his postdoc with Ron Germain. There, he worked on the mechanisms of neutrophil swarming during infection, and received the Robert-Koch Postdoctoral Award in 2014. Since 2015, Tim has been a Group Leader at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg, where his lab investigates the single-cell and population dynamics of immune cells. He was awarded an ERC Starting Grant in 2016.


2021 ◽  
Vol 49 (2) ◽  
pp. 815-827
Author(s):  
Giancarlo Solaini ◽  
Gianluca Sgarbi ◽  
Alessandra Baracca

In the last two decades, IF1, the endogenous inhibitor of the mitochondrial F1Fo-ATPase (ATP synthase) has assumed greater and ever greater interest since it has been found to be overexpressed in many cancers. At present, several findings indicate that IF1 is capable of playing a central role in cancer cells by promoting metabolic reprogramming, proliferation and resistance to cell death. However, the mechanism(s) at the basis of this pro-oncogenic action of IF1 remains elusive. Here, we recall the main features of the mechanism of the action of IF1 when the ATP synthase works in reverse, and discuss the experimental evidence that support its relevance in cancer cells. In particular, a clear pro-oncogenic action of IF1 is to avoid wasting of ATP when cancer cells are exposed to anoxia or near anoxia conditions, therefore favoring cell survival and tumor growth. However, more recently, various papers have described IF1 as an inhibitor of the ATP synthase when it is working physiologically (i.e. synthethizing ATP), and therefore reprogramming cell metabolism to aerobic glycolysis. In contrast, other studies excluded IF1 as an inhibitor of ATP synthase under normoxia, providing the basis for a hot debate. This review focuses on the role of IF1 as a modulator of the ATP synthase in normoxic cancer cells with the awareness that the knowledge of the molecular action of IF1 on the ATP synthase is crucial in unravelling the molecular mechanism(s) responsible for the pro-oncogenic role of IF1 in cancer and in developing related anticancer strategies.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5447
Author(s):  
Maria Iorio ◽  
Nikkitha Umesh Ganesh ◽  
Monica De Luise ◽  
Anna Maria Porcelli ◽  
Giuseppe Gasparre ◽  
...  

Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known


2019 ◽  
Author(s):  
Aurélie Bouteau ◽  
Botond Z. Igyártó

AbstractHuLangerin-Cre-YFPf/f mice were generated to specifically mark a subset of antigen presenting immune cells, called Langerhans cells (LCs). During histological characterization of these mice, we found that, in addition to LCs an uncharacterized cell population in the central nervous system (CNS) also expressed YFP. In this study, we found that the CNS YFP+ cells were negative for microglia and astrocyte markers, but they expressed mature neuronal marker NeuN and showed neuronal localization/morphology. Thus, these mice might be used to study the ontogeny, migration and the role of a subset of CNS neurons.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


Sign in / Sign up

Export Citation Format

Share Document