scholarly journals Effect of Lactobacillus johnsonii Strain SQ0048 on the TLRs-MyD88/NF-κB Signaling Pathway in Bovine Vaginal Epithelial Cells

2021 ◽  
Vol 8 ◽  
Author(s):  
Chao Cheng ◽  
Linchong Zhang ◽  
Junxiang Mu ◽  
Qiaozhen Tian ◽  
Yanming Liu ◽  
...  

Vaginal inflammation is a common disease of the dairy cows' reproductive tract. Lactic acid bacteria can combat purulent inflammation caused by pathogenic bacteria and regulate the NF-κB signaling pathway mediated by toll-like receptors (TLRs) in the inflammatory response. We studied the effect of Lactobacillus johnsonii SQ0048, an isolate with antibacterial activity, on the NF-κB signaling pathway in cow vaginal epithelial cells. The expression levels of serial effectors related to the TLRs-MyD88/NF-κB signaling pathway (TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β, IL-6, TNF-α, and IL-10) were measured with real-time polymerase chain reaction (RT-PCR), ELISA, and Western blot analyses. TLR2 and TLR4 were activated by SQ0048 cells, as noted by increased mRNA expression levels of TLR2 and TLR4 in SQ0048-treated bovine vaginal epithelial cells relative to control cells (P <0.01). SQ0048 treatment also significantly increased MyD88 and IKK expression, and activated NF-κB in vaginal epithelial cells (P <0.01). In addition, SQ0048 treatment also significantly increased mRNA expression levels of IL-1β, IL-6, and TNF-α, but decreased IL-10 mRNA expression levels (P <0.01). These data indicate that strain SQ0048 presence can improve the immune functions of cow vaginal epithelial cells by activating TLRs-MyD88/NF-κB signaling pathways. However, further in vivo studies are required to confirm these findings.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xianrong Zhou ◽  
Hang-Hang Du ◽  
Luyao Ni ◽  
Jie Ran ◽  
Jian Hu ◽  
...  

Long-term exposure to UVB (280–320 nm) can cause oxidative skin damage, inflammatory injury, and skin cancer. Research on nicotinamide mononucleotide (NMN) and lactic acid bacteria (LAB) with regard to antioxidation, anti-inflammation, and prevention of other age-related diseases has received increasing attention. In the present study, the in vitro antioxidant analysis showed that NMN combined with Lactobacillus fermentum TKSN041 (L. fermentum TKSN041) has a high scavenging ability on hydroxyl (OH), 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and it also possess a good total antioxidant capacity. The animal experimental results show that NMN combined with LAB maintained normal liver morphology of mice and reduced pathological damage to murine skin. NMN combined with LAB significantly increased the serum levels of total superoxide dismutase (T-SOD), catalase (CAT), and interleukin (IL)-10, but reduced the levels of malondialdehyde, advanced glycation end products, tumor necrosis factor (TNF)-α, and IL-6. NMN combined with LAB increased T-SOD, CAT, IL-10, Na+-K+-ATPase, and NAD+ levels in the skin, but reduced TNF-α level in the skin. NMN combined with LAB increased the mRNA expression levels of SOD1, CAT, glutathione (GSH), inhibitor of NF-κB (IκB-α), IL-10, AMP-activated protein kinase (AMPK), adaptor protein, phosphotyros ineinteraction, PH domain and leucine zipper containing 1 (APPL1), peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), and forkhead transcription factor O (FOXO) in the skin and liver, but decreased the mRNA expression levels of nuclear factor (NF)-κBp65, TNF-α, IL-6, and rapamycin target protein (mTOR). NMN combined with LAB increased the protein expression levels of AMPK, IκB-α, SOD1, and CAT in the skin tissues and reduced protein expression of NF-κBp65. NMN combined with L. fermentum TKSN041 improved murine skin damage caused by UVB irradiation, and the protective mechanism may be related to activation of the AMPK signaling pathway. The results of this study are expected to provide a reference for preventing and the treating skin photoaging.


Author(s):  
Shingo Yasuda ◽  
Takayoshi Sumioka ◽  
Hiroki Iwanishi ◽  
Yuka Okada ◽  
Masayasu Miyajima ◽  
...  

AbstractSphingosine 1-phosphate (S1P) is a bioactive sphingolipid generated through sphingosine kinase1 (SPK1)-mediated phosphorylation of sphingosine. We show here that injury-induced S1P upregulation increases corneal neovascularization through stimulating S1PR3, a cognate receptor. since this response was suppressed in S1PR3-knockout mice. Furthermore, Cayman10444, a selective S1PR3 inhibitor, reduced this response in WT mice. Such reductions in neovascularization were associated with reduced vascular endothelial growth factor A (VEGF-A) mRNA expression levels in WT TKE2 corneal epithelial cells and macrophages treated with CAY10444 as well as macrophages isolated from S1PR3 KO mice. S1P increased tube-like vessel formation in human vascular endothelial cells (HUVEC) and human retinal microvascular endothelial cells (HRMECs) cells expressing S1PR3. In S1PR3 KO mice, TGFβ1-induced increases in αSMA gene expression levels were suppressed relative to those in the WT counterparts. In S1PR3 deficient macrophages, VEGF-A expression levels were lower than in WT macrophages. Transforming growth factor β1(TGFβ1) upregulated SPK1 expression levels in ocular fibroblasts and TKE2 corneal epithelial cells. CAY10444 blocked S1P-induced increases in VEGF-A mRNA expression levels in TKE2 corneal epithelial cells. Endogenous S1P signaling upregulated VEGF-A and VE-cadherin mRNA expression levels in HUVEC. Unlike in TKE2 cells, SIS3 failed to block TGFβ1-induced VEGF-A upregulation in ocular fibroblasts. Taken together, these results indicate that injury-induced TGFβ1 upregulation increases S1P generation through increases in SPK1 activity. The rise in S1P formation stimulates the S1PR3-linked signaling pathway, which in turn increases VEGF-A expression levels and angiogenesis in mouse corneas.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3847-3847 ◽  
Author(s):  
Yunfeng Cheng ◽  
Shanhua Zou ◽  
Feng Li

Abstract Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by platelet destruction resulting from autoantibodies against self-antigens and T-cell mediated cytotoxicity. Toll-like receptors (TLRs) are pattern recognition receptors important in mediating the immune response and their activation can lead to production of cytokines. Recent data suggest that TLR2 and TLR4 are crucial for the production of inflammatory cytokines and play central role in autoimmune diseases, yet little is known about their roles in ITP. Here we examined the gene expressions of TLR2 and TLR4 in ITP patients. We hypothesize that significant differences will exist between pre-treatment and post-treatment in ITP patients with similar changes reflected in the plasma concentration of cytokines. Total RNA was extracted from mononuclear cells obtained from 12 ITP patients and 15 healthy subjects. TLR2 and TLR4 mRNA expression levels were analyzed using a quantitative real-time PCR method and their protein expressions were validated by western blot. Plasma concentrations of cytokines IL-2, IFN-γ and TNF-α were measured by ELISA. Correlation analyses were carried out between the mRNA expression levels of TLR2 or TLR4 and the plasma levels of IL-2, IFN-γ and TNF-α. The gene expression of TLR2 and TLR4 were significantly increased in ITP patients comparing to healthy control group (p < 0.05 and p < 0.01, respectively). In addition their mRNA expression levels were decreased back into normal range after remission in 8 patients (p > 0.05, compared to healthy control group). Significantly positive correlations were found between the TLR2 mRNA expression level and the plasma concentration of IFN-γ or TNF-α (R = 0.75, p < 0.05; R = 0.83, p < 0.05, respectively). Changes in the gene expression of TLR4 and in the plasma concentration of IFN-γ or TNF-α were also significantly correlated (R = 0.82, p < 0.05; R = 0.88, p < 0.05, respectively). Directional changes in TLR2 / TLR4 and IFN-γ /TNF-α expression were concordant. However, there was no correlation found between TLR2 / TLR4 and IL-2. Differences in TLR2 and TLR4 expression strongly correlated with changes in IFN-γ and TNF-α suggest that the increased gene expressions of TLR2 and TLR4 in ITP patients may contribute to the pathophysiological progression of this disease by increasing the secretion of IFN-γ and TNF-α. Additional studies need to be performed to further clarify the role of TLRs -cytokines pathway in ITP.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5432 ◽  
Author(s):  
Wen-Ta Li ◽  
Lei-Ya Wang ◽  
Hui-Wen Chang ◽  
Wei-Cheng Yang ◽  
Chieh Lo ◽  
...  

Background Silver nanoparticles (AgNPs) have been widely used in many commercial products due to their excellent antibacterial ability. The AgNPs are released into the environment, gradually accumulate in the ocean, and may affect animals at high trophic levels, such as cetaceans and humans, via the food chain. Hence, the negative health impacts caused by AgNPs in cetaceans are of concern. Cytokines play a major role in the modulation of immune system and can be classified into two types: Th1 and Th2. Th1/Th2 balance can be evaluated by the ratios of their polarizing cytokines (i.e., interferon [IFN]-γ/Interleukin [IL]-4), and animals with imbalanced Th1/Th2 response may become more susceptible to certain kinds of infection. Therefore, the present study evaluated the in vitro cytokine responses of cetacean peripheral blood mononuclear cells (cPBMCs) to 20 nm citrate-AgNPs (C-AgNP20) by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Methods Blood samples were collected from six captive common bottlenose dolphins (Tursiops truncatus). The cPBMCs were isolated and utilized for evaluating the in vitro cytokine responses. The cytokines evaluated included IL-2, IL-4, IL-10, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. The geometric means of two housekeeping genes (HKGs), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β2-microglobulin (B2M), of each sample were determined and used to normalize the mRNA expression levels of target genes. Results The ratio of late apoptotic/necrotic cells of cPBMCs significantly increased with or without concanavalin A (ConA) stimulation after 24 h of 10 µg/ml C-AgNP20 treatment. At 4 h of culture, the mRNA expression level of IL-10 was significantly decreased with 1 µg/ml C-AgNP20 treatment. At 24 h of culture with 1 µg/ml C-AgNP20, the mRNA expression levels of all cytokines were significantly decreased, with the exceptions of IL-4 and IL-10. The IFN-γ/IL-4 ratio was significantly decreased at 24 h of culture with 1 µg/ml C-AgNP20 treatment, and the IL-12/IL-4 ratio was significantly decreased at 4 or 24 h of culture with 0.1 or 1 µg/ml C-AgNP20 treatment, respectively. Furthermore, the mRNA expression level of TNF-α was significantly decreased by 1 µg/ml C-AgNP20 after 24 h of culture. Discussion The present study demonstrated that the sublethal dose of C-AgNP20 (≤1 µg/ml) had an inhibitory effect on the cytokine mRNA expression levels of cPBMCs with the evidence of Th2 cytokine bias and significantly decreased the mRNA expression level of TNF-α. Th2 cytokine bias is associated with enhanced immunity against parasites but decreased immunity to intracellular microorganisms. TNF-α is a contributing factor for the inflammatory response against the infection of intracellular pathogens. In summary, our data indicate that C-AgNP20 suppresses the cellular immune response and thereby increases the susceptibility of cetaceans to infection by intracellular microorganisms.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1777
Author(s):  
Hyejin Sohn ◽  
You Hyun Chang ◽  
Jong Hyeok Yune ◽  
Chang Hee Jeong ◽  
Dong Min Shin ◽  
...  

The purpose of this study was to investigate the probiotic properties of lactic acid bacteria isolated from Korean radish water kimchi (dongchimi). A total of 800 isolates of lactic acid bacteria were isolated from kimchi, and the strain having reduction and tolerance capability for nitrate and nitrite was selected and identified as Lactiplantibacillus plantarum LB5 (LPLB5) by 16S rRNA sequencing. LPLB5 showed higher tolerance to acidic pH values (pH 2.5), 0.3% bile salts, and heat treatment (40, 50, and 60 °C). Antibacterial activity showed strong inhibition against four food-borne pathogenic bacteria (E. coli O157:H7 ATCC 35150, Pseudomonas aeruginosa KCCM 12539, Listeria monocytogenes KCCM 40307, and Staphylococcus aureus ATCC 25923). The strain did not show any antibiotic resistance, β-hemolytic activity, or ability to produce β-glucuronidase. LPLB5 also exhibited a 30% auto-aggregation ability and 33–60% co-aggregation ability with four pathogenic bacteria (E. coli O157: H7 ATCC 35150, E. coli KCTC 2571, L. monocytogenes ATCC 51776, and S. aureus ATCC 25923). Moreover, the strain showed approximately 40% 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical- and 10% 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity. In cell culture studies, human colon epithelial cells (Caco-2) were treated with LPLB5 (106 and 107 CFU/mL); the bacteria showed more than 70% adherence onto and a 32% invasion rate into the Caco-2 cells. LPLB5 significantly decreased the mRNA expression levels of pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and increased the mRNA expression levels of anti-inflammatory cytokines (interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon-gamma (IFN-γ)) in lipopolysaccharide-stimulated Caco-2 cells. Our data suggest that LPLB5 is safe and possesses probiotic, antioxidant, and anti-inflammatory activities.


2008 ◽  
Vol 22 (1-4) ◽  
pp. 057-068 ◽  
Author(s):  
Beate Illek ◽  
Rosalie Maurisse ◽  
Logan Wahler ◽  
Karl Kunzelmann ◽  
Horst Fischer ◽  
...  

2017 ◽  
Vol 29 (1) ◽  
pp. 149
Author(s):  
E. V. García ◽  
M. Hamdi ◽  
A. D. Barrera ◽  
M. J. Sánchez-Calabuig ◽  
A. Gutiérrez-Adán ◽  
...  

In previous studies, we have demonstrated that different signalling components of bone morphogenetic proteins (BMP) are expressed in an anatomically and temporally regulated fashion in the bovine oviduct. However, a local response of this signalling to the embryo presence has not been elucidated yet. The aim of the present study was to evaluate whether the interaction of the embryo with the oviduct can induce changes in the gene expression of BMP signalling components. For this purpose, we used an in vitro co-culture system of a bovine oviducal epithelial cell (BOEC) monolayer with pre-implantation embryos in 2 developmental time points: before and during the main phase of embryonic genome activation (EGA). Isthmus epithelial cells from post-ovulatory stage oviducts (Day 2–4) were cultured in 500 μL of SOF + 10% FCS in 4-well plates at 38.5°C, 5% CO2, 5% O2, and 90% N2. On Day 6 of culture, medium was replaced with SOF + 5% FCS, and 24 h later BOEC monolayer was cultured in the absence or presence of in vitro-produced embryos from 2- to 8-cell stage [G1 BOEC; 33–54 h post-insemination (hpi)] or from 8- to 16-cell stage (G2 BOEC; 54–98 hpi) in the same conditions. In both groups, a polyester mesh was used to define a local co-culture area, and 30 embryos per well were placed in a 6 × 5 grid over the monolayer. In addition, as control groups, embryos in both developmental stages were cultured either in SOF + 5% FCS (G1 FCS and G2 FCS) or in SOF + 3 mg mL−1 BSA (G1 BSA and G2 BSA). At 54 hpi (G1 BOEC/BSA/FCS) or 98 hpi (G2 BOEC/BSA/FCS), embryos that reached 8- or 16-cell stage, respectively, were transferred to SOF + BSA and cultured until Day 9. The mRNA expression levels of 3 BMP receptors (BMPRIA/IB/II), 2 signalling proteins (SMAD1/5), 1 inhibitor (SMAD6), and 1 target gene (ID2) were analysed by qPCR in 5 samples of BOEC cultured with or without embryos before or during EGA, and in 3 pools of 10 embryos at 8 (54 hpi), 16 (98 hpi), and blastocyst stage (Day 7–8) from all groups. Genes H2A.Z and ACTG1 were used as housekeeping genes, and statistical differences were assessed by ANOVA. The presence of the embryo, irrespective the stage, significantly reduced the expression levels of BMPRIB, BMPRII, SMAD1, SMAD6, and ID2 in BOEC. Embryos that interacted with BOEC before EGA (G1 BOEC) showed a significant increase in the relative abundance of SMAD1 at the 8-cell stage compared with controls. Moreover, embryos that interacted with BOEC during EGA (G2 BOEC) showed a significant increase in the relative abundance of BMPRIB, BMPRII, and ID2 at the 16-cell stage when compared with controls. However, no differences were observed in the mRNA expression levels of BMP signalling components in the blastocysts between groups. In conclusion, local embryo-oviduct interaction in vitro induces changes in the transcriptional levels of BMP signalling, causing a bidirectional response that reduces the expression levels of this signalling in the oviducal cells while increases them in the embryo at early stages. This suggests that BMP signalling pathway could be involved in an early cross-talk between the bovine embryo and the oviduct during first stages of development.


2016 ◽  
Vol 11 (6) ◽  
pp. 2365-2372 ◽  
Author(s):  
HENRIQUE SULZBACH SULZBACH DE OLIVEIRA ◽  
VANDERLEI BIOLCHI ◽  
HELOUISE RICHARDT RICHARDT MEDEIROS ◽  
DAIANE BIZERRA GANDOR BIZERRA GANDOR JANTSCH ◽  
LUCIANA KNABBEN KNABBEN DE OLIVEIRA BECKER DELVING ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document