scholarly journals Rhinoceros Serum microRNAs: Identification, Characterization, and Evaluation of Potential Iron Overload Biomarkers

2021 ◽  
Vol 8 ◽  
Author(s):  
Jessye Wojtusik ◽  
Erin Curry ◽  
Terri L. Roth

Iron overload disorder (IOD) in critically endangered Sumatran (Dicerorhinus sumatrensis) and black (Diceros bicornis) rhinoceros is an over-accumulation of iron in organs which may exacerbate other diseases and indicate metabolic disturbances. IOD in rhinos is not well understood and diagnostics and therapeutics are limited in effectiveness. MicroRNAs (miRNAs) are small non-coding RNAs capable of altering protein synthesis. miRNA expression responds to physiological states and could serve as the basis for development of diagnostics and therapeutics. This study aimed to identify miRNAs differentially expressed among healthy rhinos and those afflicted with IOD or other diseases (“unhealthy”), and assess expression of select miRNAs to evaluate their potential as biomarkers of IOD. miRNAs in serum of black (n = 11 samples; five individuals) and Sumatran (n = 7 samples; four individuals) rhinos, representing individuals categorized as healthy (n = 9), unhealthy (n = 5), and afflicted by IOD (n = 3) were sequenced. In total, 715 miRNAs were identified, of which 160 were novel, 131 were specific to black rhinos, and 108 were specific to Sumatran rhinos. Additionally, 95 miRNAs were specific to healthy individuals, 31 specific to unhealthy, and 63 were specific to IOD individuals. Among healthy, unhealthy, and IOD states, 21 miRNAs were differentially expressed (P ≤ 0.01). Five known miRNAs (let-7g, miR-16b, miR-30e, miR-143, and miR-146a) were selected for further assessment via RT-qPCR in serum from black (n = 61 samples; seven individuals) and Sumatran (n = 38 samples; five individuals) rhinos. let-7g, miR-30e, and miR-143 all showed significant increased expression (P ≤ 0.05) during IOD (between 1 and 2 years prior to death) and late IOD (within 1 year of death) compared to healthy and unhealthy individuals. miR-16b expression increased (P ≤ 0.05) in late IOD, but was not different among IOD, healthy, and unhealthy states (P > 0.05). Expression of miR-146a increased in IOD and late IOD as compared to unhealthy samples (P ≤ 0.05) but was not different from the healthy state (P > 0.05). Selected serum miRNAs of black and Sumatran rhinos, in particular let-7g, miR-30e, and miR-143, could therefore provide a tool for advancing rhino IOD diagnostics that should be further investigated.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3530
Author(s):  
Penn Muluhngwi ◽  
Carolyn M. Klinge

Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huili Qiao ◽  
Jingya Wang ◽  
Yuanzhuo Wang ◽  
Juanjuan Yang ◽  
Bofan Wei ◽  
...  

Abstract Background 20-hydroxyecdysone (20E) plays important roles in insect molting and metamorphosis. 20E-induced autophagy has been detected during the larval–pupal transition in different insects. In Bombyx mori, autophagy is induced by 20E in the larval fat body. Long non-coding RNAs (lncRNAs) function in various biological processes in many organisms, including insects. Many lncRNAs have been reported to be potential for autophagy occurrence in mammals, but it has not been investigated in insects. Results RNA libraries from the fat body of B. mori dissected at 2 and 6 h post-injection with 20E were constructed and sequenced, and comprehensive analysis of lncRNAs and mRNAs was performed. A total of 1035 lncRNAs were identified, including 905 lincRNAs and 130 antisense lncRNAs. Compared with mRNAs, lncRNAs had longer transcript length and fewer exons. 132 lncRNAs were found differentially expressed at 2 h post injection, compared with 64 lncRNAs at 6 h post injection. Thirty differentially expressed lncRNAs were common at 2 and 6 h post-injection, and were hypothesized to be associated with the 20E response. Target gene analysis predicted 6493 lncRNA-mRNA cis pairs and 42,797 lncRNA-mRNA trans pairs. The expression profiles of LNC_000560 were highly consistent with its potential target genes, Atg4B, and RNAi of LNC_000560 significantly decreased the expression of LNC_000560 and Atg4B. These results indicated that LNC_000560 was potentially involved in the 20E-induced autophagy of the fat body by regulating Atg4B. Conclusions This study provides the genome-wide identification and functional characterization of lncRNAs associated with 20E-induced autophagy in the fat body of B. mori. LNC_000560 and its potential target gene were identified to be related to 20-regulated autophagy in B. mori. These results will be helpful for further studying the regulatory mechanisms of lncRNAs in autophagy and other biological processes in this insect model.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1268
Author(s):  
Shengchao Zhang ◽  
Sibtain Ahmad ◽  
Yuxia Zhang ◽  
Guohua Hua ◽  
Jianming Yi

Enhanced plane of nutrition at pre-weaning stage can promote the development of mammary gland especially heifer calves. Although several genes are involved in this process, long intergenic non-coding RNAs (lincRNAs) are regarded as key regulators in the regulated network and are still largely unknown. We identified and characterized 534 putative lincRNAs based on the published RNA-seq data, including heifer calves in two groups: fed enhanced milk replacer (EH, 1.13 kg/day, including 28% crude protein, 25% fat) group and fed restricted milk replacer (R, 0.45 kg/day, including 20% crude protein, 20% fat) group. Sub-samples from the mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested from heifer calves. According to the information of these lincRNAs’ quantitative trait loci (QTLs), the neighboring and co-expression genes were used to predict their function. By comparing EH vs R, 79 lincRNAs (61 upregulated, 18 downregulated) and 86 lincRNAs (54 upregulated, 32 downregulated) were differentially expressed in MFP and PAR, respectively. In MFP, some differentially expressed lincRNAs (DELs) are involved in lipid metabolism pathways, while, in PAR, among of DELs are involved in cell proliferation pathways. Taken together, this study explored the potential regulatory mechanism of lincRNAs in the mammary gland development of calves under different planes of nutrition.


2021 ◽  
Vol 22 (4) ◽  
pp. 1539
Author(s):  
Paola De Sanctis ◽  
Giuseppe Filardo ◽  
Provvidenza Maria Abruzzo ◽  
Annalisa Astolfi ◽  
Alessandra Bolotta ◽  
...  

In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared—the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Emilia Bagnicka ◽  
Ewelina Kawecka-Grochocka ◽  
Klaudia Pawlina-Tyszko ◽  
Magdalena Zalewska ◽  
Aleksandra Kapusta ◽  
...  

AbstractMicroRNAs (miRNAs) are short, non-coding RNAs, 21–23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Dadong Deng ◽  
Xihong Tan ◽  
Kun Han ◽  
Ruimin Ren ◽  
Jianhua Cao ◽  
...  

The development of the placental fold, which increases the maternal–fetal interacting surface area, is of primary importance for the growth of the fetus throughout the whole pregnancy. However, the mechanisms involved remain to be fully elucidated. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) are a new class of RNAs with regulatory functions and could be epigenetically regulated by histone modifications. In this study, 141 lncRNAs (including 73 up-regulated and 68 down-regulated lncRNAs) were identified to be differentially expressed in the placentas of pigs during the establishment and expanding stages of placental fold development. The differentially expressed lncRNAs and genes (DElncRNA-DEgene) co-expression network analysis revealed that these differentially expressed lncRNAs (DElncRNAs) were mainly enriched in pathways of cell adhesion, cytoskeleton organization, epithelial cell differentiation and angiogenesis, indicating that the DElncRNAs are related to the major events that occur during placental fold development. In addition, we integrated the RNA-seq (RNA sequencing) data with the ChIP-seq (chromatin immunoprecipitation sequencing) data of H3K4me3/H3K27ac produced from the placental samples of pigs from the two stages (gestational days 50 and 95). The analysis revealed that the changes in H3K4me3 and/or H3K27ac levels were significantly associated with the changes in the expression levels of 37 DElncRNAs. Furthermore, several H3K4me3/H3K27ac-lncRNAs were characterized to be significantly correlated with genes functionally related to placental development. Thus, this study provides new insights into understanding the mechanisms for the placental development of pigs.


Genomics Data ◽  
2015 ◽  
Vol 6 ◽  
pp. 214-216 ◽  
Author(s):  
Lizhen Wang ◽  
Xiaokun Shen ◽  
Bojian Xie ◽  
Zhaosheng Ma ◽  
Xiaobing Chen ◽  
...  

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Emma L Robinson ◽  
Syed Haider ◽  
Hillary Hei ◽  
Richard T Lee ◽  
Roger S Foo

Heart failure comprises of clinically distinct inciting causes but a consistent pattern of change in myocardial gene expression supports the hypothesis that unifying biochemical mechanisms underlie disease progression. The recent RNA-seq revolution has enabled whole transcriptome profiling, using deep-sequencing technologies. Up to 70% of the genome is now known to be transcribed into RNA, a significant proportion of which is long non-coding RNAs (lncRNAs), defined as polyribonucleotides of ≥200 nucleotides. This project aims to discover whether the myocardium expression of lncRNAs changes in the failing heart. Paired end RNA-seq from a 300-400bp library of ‘stretched’ mouse myocyte total RNA was carried out to generate 76-mer sequence reads. Mechanically stretching myocytes with equibiaxial stretch apparatus mimics pathological hypertrophy in the heart. Transcripts were assembled and aligned to reference genome mm9 (UCSC), abundance determined and differential expression of novel transcripts and alternative splice variants were compared with that of control (non-stretched) mouse myocytes. Five novel transcripts have been identified in our RNA-seq that are differentially expressed in stretched myocytes compared with non-stretched. These are regions of the genome that are currently unannotated and potentially are transcribed into non-coding RNAs. Roles of known lncRNAs include control of gene expression, either by direct interaction with complementary regions of the genome or association with chromatin remodelling complexes which act on the epigenome.Changes in expression of genes which contribute to the deterioration of the failing heart could be due to the actions of these novel lncRNAs, immediately suggesting a target for new pharmaceuticals. Changes in the expression of these novel transcripts will be validated in a larger sample size of stretched myocytes vs non-stretched myocytes as well as in the hearts of transverse aortic constriction (TAC) mice vs Sham (surgical procedure without the aortic banding). In vivo investigations will then be carried out, using siLNA antisense technology to silence novel lncRNAs in mice.


Sign in / Sign up

Export Citation Format

Share Document