scholarly journals A Focus on Soft Actuation

Actuators ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 74 ◽  
Author(s):  
Miriyev

The present editorial paper analyzes the hundred recent research works on soft actuation to understand the current main research focus in the light of the grand challenges in the field. Two characteristic paper types were obtained: one focuses on soft actuator design, manufacturing and demonstration, while another includes in addition the development of functional materials. Although vast majority of the works showcased soft actuation, evaluation of its robustness by multi-cyclic actuation was reported in less than 50% of the works, while only 10% described successful actuation for more than 1000 cycles. It is suggested that broadening the research focus to include investigation of mechanisms underlying the degradation of soft functional material performance in real cyclic actuation conditions, along with application of artificial intelligence methods for prediction of muscle behavior, may allow overcoming the reliability issues and developing robust soft-material actuators. The outcomes of the present work might be applicable to the entire soft robotics domain.


Robotica ◽  
2019 ◽  
Vol 38 (4) ◽  
pp. 732-746
Author(s):  
Guanjun Bao ◽  
Lingfeng Chen ◽  
Yaqi Zhang ◽  
Shibo Cai ◽  
Fang Xu ◽  
...  

SUMMARYIn recent years, soft robotics is widely considered as the most promising field for both research and application. First of all, the actuator is fundamental for designing, modeling, and controlling of soft robots. This paper presents a new type of pneumatic trunk-like soft actuator, which contains a chamber for stiffness adjustment in addition to three chambers for driving. Thus, the salient feature of the proposed actuator is the ability of stiffness self-regulation. The structure of the proposed actuator is described in detail. Then the theoretical models for elongation and bending motion of the actuator are established. The elongation as well as single-chamber and multi-chamber driving bending of the actuator were tested to verify the mathematical models. Finally, a dual-segment soft robot based on the proposed trunk-like soft actuator was developed and tested by experiments, which implies its potential application in practice.



Author(s):  
Annika Reinke ◽  
Minu D. Tizabi ◽  
Matthias Eisenmann ◽  
Lena Maier-Hein


Conventional actuators based on metal and ceramics face challenges in utilizing them for service and welfare robots, which should work cooperatively with human workers. Dielectric elastomer actuators (DEAs) are a promising alternative to the conventional hard actuators, because they can realize motions which more resemble those of human muscles. Our research aimed at developing a DEA for applications in handling robotic arms and gripper hands for service/welfare robots. To this end, the elements of soft actuator ought to be fabricated and integrated into a large-scale array. Design of the actuator need to be optimized using computational dynamics and Finite Element Analysis (FEA). The application of DEA in robotics is expected to create a drive for the practical realization of reliable and functional DEAs. It could also promote commercialization and tap into the vast potential service/welfare robotic market



2021 ◽  
Vol 1 (1) ◽  
pp. 76-87
Author(s):  
Alexander Buhmann ◽  
Christian Fieseler

Organizations increasingly delegate agency to artificial intelligence. However, such systems can yield unintended negative effects as they may produce biases against users or reinforce social injustices. What pronounces them as a unique grand challenge, however, are not their potentially problematic outcomes but their fluid design. Machine learning algorithms are continuously evolving; as a result, their functioning frequently remains opaque to humans. In this article, we apply recent work on tackling grand challenges though robust action to assess the potential and obstacles of managing the challenge of algorithmic opacity. We stress that although this approach is fruitful, it can be gainfully complemented by a discussion regarding the accountability and legitimacy of solutions. In our discussion, we extend the robust action approach by linking it to a set of principles that can serve to evaluate organisational approaches of tackling grand challenges with respect to their ability to foster accountable outcomes under the intricate conditions of algorithmic opacity.



Author(s):  
Alina Mihaela Dima ◽  
Simona Vasilache

This chapter includes an overview of the academic research recently dedicated to educational policies in European higher education. This chapter reviews the main research databases, looking for general and specialized articles referring to academic research, and the authors map the trends in mainstream literature. They identify the dynamics of articles dedicated to academic research, the most frequent topics, and assess their impact on educational policies in European universities. The chapter is based on a quantitative analysis of the records, as well as on the debates and analyses of the research on educational policies in recent years.



Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 9-11
Author(s):  
Jun Ogawa

Soft robotics is a subfield of robots that deals with constructing robots from soft, elastic materials similar to those found in living organisms. These robots offer a particular set of advantages compared with conventional rigid robots. For example, in medicine they can be used in drug delivery and non-invasive surgical procedures, and be employed as assistive devices, prostheses or artificial organs. The field takes great inspiration from the way living organisms move and adapt to their surroundings, and the flexibility and adaptability of soft robots make them invaluable tools. Dr Jun Ogawa is an Associate Professor in the Institute of Organic Materials at Yamagata University, Japan. His key research interests are soft matter robotics and embodied artificial intelligence (AI).



2012 ◽  
pp. 165-172 ◽  
Author(s):  
M.F. A. ‘ATHIF ◽  
M.N. ILI NAJAA AIMI ◽  
R. NUR FATIHA ◽  
M.R. M. RUSYDI ◽  
D. HIROOKA ◽  
...  




Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 792
Author(s):  
Shuhei Kawamura ◽  
Mingcong Deng

Recently, soft actuators have been expected to have many applications in various fields. Most of the actuators are composed of flexible materials and driven by air pressure. The 3-DOF micro-hand, which is a kind of soft actuator, can realize a three degrees of freedom motion by changing the applied air pressure pattern. However, the input–output relation is nonlinear and complicated. In previous research, a model of the micro-hand was proposed, but an error between the model and the experimental results was large. In this paper, modeling for the micro-hand is proposed by using multi-output support vector regression (MSVR) and ant colony optimization (ACO), which is one of the artificial intelligence (AI) methods. MSVR estimates the input–output relation of the micro-hand. ACO optimizes the parameters of the MSVR model.



2010 ◽  
Vol 1276 ◽  
Author(s):  
José G. Miranda-Hernández ◽  
Elizabeth Refugio-Garcia ◽  
Elizabeth Garfias-García ◽  
Enrique Rocha-Rangel

AbstractThe synthesis of Al2O3-based functional materials having 10 vol. % of fine aluminum or titanium and aluminum-disperse or titanium-dispersed nitride hardened-particles has been explored. Two experimental steps have been set for the synthesis; specifically, sintering of Al2O3-aluminum or Al2O3-titanium powders which were thoroughly mixed under high energy ball-milling, pressureless-sintered at 1400°C during 1 h in argon atmosphere and then for the second step it was induced formation of aluminum nitride or titanium nitride at 500°C during different times (24, 72 and 120 h) by a nitriding process via immersion in ammoniac salts. SEM analyses of the microstructures obtained in nitride bodies were performed in order to know the effect of the ammoniac salts used as nitrating on the microstructure of aluminum or titanium for each studied functional material. It was observed that an aluminum nitride or titanium nitride layer growth from the surface into the bulk and reaches different depth as the nitriding time of the functional material was increased. The use of aluminum or titanium significantly enhanced density level and hardness of the functional materials.



Sign in / Sign up

Export Citation Format

Share Document