scholarly journals Impact of Climate Change on Durum Wheat Yield

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 793 ◽  
Author(s):  
Erika Sabella ◽  
Alessio Aprile ◽  
Carmine Negro ◽  
Francesca Nicolì ◽  
Eliana Nutricati ◽  
...  

Climate change will inevitably affect agriculture. Simulations of the effects of climate change on the agronomic performance (plant height, biomass dry weight, number of spikes, grain weight, harvest index, and 1000-kernel weight) of nine durum wheat cultivars were performed to identify the genotypes that will have a greater yield potential over the next 50 years. Plants were grown in two Fitotron® CGR crop growth chambers: “room 2020” designed to reproduce the current climatic conditions (control) and “room 2070”, designed to simulate the expected climate for the year 2070 in the RCP8.5 scenario (800 ppm, elevated [CO2], and a temperature increase of 2.5 °C). The plant life cycle was clearly shorter in “room 2070” due to the physiological strategy of the plant to escape the high summer temperatures through early ripening of the kernels. Again, in “room 2070”, the modern cultivars Rusticano, San Carlo, and Simeto and the old cultivar Cappelli increased the grain yield. Surprisingly, Cappelli seemed to be particularly suitable for cultivation in an environment rich in atmospheric CO2 and under high temperature stress, since it produced a grain yield that was approximately three times higher than the other varieties.

1994 ◽  
Vol 74 (2) ◽  
pp. 279-285 ◽  
Author(s):  
G. Tremblay ◽  
C. Vasseur

Although bioclimatic conditions of the Saint Lawrence Lowlands are generally good enough to grow wheat for bread, management of this wheat production is poorly known in Quebec. Yields and total above-ground dry-matter biomass of three spring wheat (Triticum aestivum L.) cultivars (Max, Columbus and Katepwa) were measured in 1991 and 1992 under three management systems on a clay loam soil of the Saint Lawrence Lowlands. Reduced (50 kg N ha−1 and 375 plants m−2), conventional (100 kg N ha−1 and 375 plants m−2) and intensive (150 kg N ha−1 and 450 plants m−2) management systems were compared. In 1991, significant differences were observed among cultivars for four variables: stem weight, harvest index, tillers per square metre, and 1000-kernel weight. The management effect is less important than the cultivar effect. In 1992, significant differences among cultivars were observed for six of the nine variables measured, and seven of the nine variables measured differed with management. No significant cultivar × management interactions were observed in either year. Increasing input levels did not increase yield in 1991, probably because of the drier conditions. In the cooler and rainy growing season of 1992, intensive management increased wheat yield compared with that of reduced and conventional management. In both years, grain yield under reduced management was not significantly different from that under conventional management. Grain yield under intensive management was significantly higher than under reduced and conventional management in 1992 but not in 1991. The results of this study did not clearly show that intensive management was really better in the climatic conditions of the Saint Lawrence Lowlands than conventional or reduced management. Key words: Spring wheat, management, nitrogen, yield, dry matter, harvest index


Author(s):  
Qingjun Cao, Gang Li, Fentuan Yang, Xiaoli Jiang ◽  
Lamine Diallo, Enping Zhang ◽  
Fanli Kong

Delayed sowing (DS) is a critical factor influencing grain yield and quality under climate change. This study was conducted to determine maize grain yield and quality traits responses to DS and varied genotypes in rain-fed condition, northeast of China. Two typical hybrids ZD958 (higher starch type) and LM33 (higher protein type) and three sowing dates: 30 April (DS0) as normal, 10 May (DS10) and 20 May (DS20) were compared. Results demonstrated maize grain yield, biomass, kernel number per square, thousand kernel weight (TKW), grain nutrition yield, N concentration and grain test weight were significantly reduced by DS. Compared to high protein type LM33, high starch type ZD958 had a higher yield potential and lower yield reduction with delayed sowing. Grain yield loss under DS could be mainly attributed to reduction of the BMP and biomass, thereby leading to the reduction of TKW and kernels number per unit. DS didn’t affected grain nutritional content (starch, protein and oil), while significantly reduced grain nutrition yield of starch, oil and protein with delayed sowing. This study suggests that, early sowing should be recommended to the framers and varieties adjustments maybe a possible approach to reduce and compensate for the loss of yield caused by delayed sowing in rain-fed condition under climate change in NCP.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


2013 ◽  
Vol 93 (6) ◽  
pp. 1265-1270 ◽  
Author(s):  
C. J. Pozniak

Pozniak, C. J. 2013. CDC Desire durum wheat. Can. J. Plant Sci. 93: 1265–1270. CDC Desire durum wheat is adapted to the durum production area of the Canadian prairies. This conventional height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations and low grain cadmium. CDC Desire is strong-strawed and is earlier maturing than all check cultivars. CDC Desire expresses disease resistance similar to the current check cultivars.


2015 ◽  
Vol 95 (5) ◽  
pp. 1007-1012 ◽  
Author(s):  
C. J. Pozniak ◽  
J. M. Clarke

Pozniak, C. J. and Clarke, J. M. 2015. CDC Carbide durum wheat. Can. J. Plant Sci. 95: 1007–1012. CDC Carbide durum wheat is adapted to the durum production area of the Canadian prairies. This conventional-height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations, and low grain cadmium. CDC Carbide carries the Sm1 gene conferring resistance to the Orange Wheat Blossom Midge [Sitodiplosis modellana (Gehin)]. CDC Carbide is resistant to prevalent races of leaf, stem and stripe rust, and common bunt, and expresses end-use quality suitable for the Canada Western Amber Durum class.


1977 ◽  
Vol 28 (2) ◽  
pp. 165 ◽  
Author(s):  
RA Fischer ◽  
I Aguilar ◽  
DR Laing

Experiments to study the effect of grain number per sq metre on kernel weight and grain yield in a high-yielding dwarf spring wheat (Triticum aestivum cv. Yecora 70) were conducted in three seasons (1971–1973) under high-fertility irrigated conditions in north-western Mexico. Crop thinning, shading and carbon dioxide fertilization (reported elsewhere), and crowding treatments, all carried out at or before anthesis, led to a wide range in grain numbers (4000 to 34,000/m2). Results indicated the response of grain yield to changing sink size (grains per sq metre), with the post-anthesis environment identical for all crops each year, and with all but the thinner crops intercepting most of the post-anthesis solar radiation. Kernel weight fell linearly with increase in grain number over the whole range of grain numbers studied, but the rate of fall varied with the season. Grain yield, however, increased, reaching a maximum at grain numbers well above those of crops grown with optimal agronomic management but without manipulation. It was concluded that the grain yield in normal crops was limited by both sink and post-anthesis source. There was some doubt, however, as to the interpretation of results from crowded crops, because of likely artificial increases in crop respiration on the one hand, and on the other, in labile carbohydrate reserves in the crops at anthesis. Also deterioration in grain plumpness (hectolitre weight) complicates the simple inference that further gains in yield can come from increased grain numbers alone.


2020 ◽  
pp. 1264-1274
Author(s):  
P.H. Zaidi ◽  
Thanh Nguyen ◽  
Dang N. Ha ◽  
Suriphat Thaitad ◽  
Salahuddin Ahmed ◽  
...  

Most parts of the Asian tropics are hotspots of climate change effects and associated weather variabilities. One of the major challenges with climate change is the uncertainty and inter-annual variability in weather conditions as crops are frequently exposed to different weather extremes within the same season. Therefore, agricultural research must strive to develop new crop varieties with inbuilt resilience towards variable weather conditions rather than merely tolerance to individual stresses in a specific situation and/or at a specific crop stage. C4 crops are known for their wider adaptation to range of climatic conditions. However, recent climatic trends and associated variabilities seem to be challenging the threshold limit of wider adaptability of even C4 crops like maize. In collaboration with national programs and private sector partners in the region, CIMMYT-Asia maize program initiated research for development (R4D) projects largely focusing on saving achievable yields across range of variable environments by incorporating reasonable levels of tolerance/resistance to major abiotic and biotic stresses without compromising on grain yields under optimal growing conditions. By integrating novel breeding tools like - genomics, double haploid (DH) technology, precision phenotyping and reducing genotype × environment interaction effects, a new generation of maize germplasm with multiple stress tolerance that can grow well across variable weather conditions were developed. The new maize germplasm were targeted for stress-prone environments where maize is invariability exposed to a range of sub-optimal growing conditions, such as drought, heat, waterlogging and various virulent diseases. The overarching goal of the stress-resilient maize program has been to achieve yield potential with a downside risk reduction.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 454 ◽  
Author(s):  
Alejandro del Pozo ◽  
Iván Matus ◽  
Kurt Ruf ◽  
Dalma Castillo ◽  
Ana María Méndez-Espinoza ◽  
...  

In Chile, durum wheat is cultivated in high-yielding Mediterranean environments, therefore breeding programs have selected cultivars with high yield potential in addition to grain quality. The genetic progress in grain yield (GY) between 1964 and 2010 was 72.8 kg ha−1 per year. GY showed a positive and significant correlation with days to heading, kernels per unit ground area and thousand kernel weight. The gluten and protein content tended to decrease with the year of cultivar release. The correlation between the δ13C of kernels and GY was negative and significant (−0.62, p < 0.05, for all cultivars; and −0.97, p < 0.001, excluding the two oldest cultivars). The yield progress (genetic plus agronomic improvements) of a set of 40–46 advanced lines evaluated between 2006 and 2015 was 569 kg ha−1 per year. Unlike other Mediterranean agro-environments, a longer growing cycle together with taller plants seems to be related to the increase in the GY of Chilean durum wheat during recent decades.


Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.


2020 ◽  
Vol 21 (15) ◽  
pp. 5260 ◽  
Author(s):  
Samir Alahmad ◽  
Yichen Kang ◽  
Eric Dinglasan ◽  
Elisabetta Mazzucotelli ◽  
Kai P. Voss-Fels ◽  
...  

Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha−1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha−1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.


Sign in / Sign up

Export Citation Format

Share Document