scholarly journals Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation

Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 178 ◽  
Author(s):  
Santosh Shiwakoti ◽  
Valtcho Zheljazkov ◽  
Hero Gollany ◽  
Markus Kleber ◽  
Baoshan Xing

The insights gained from the long-term impacts of tillage and N fertilization on soil fertility are crucial for the development of sustainable cropping systems. The objectives of this study were to quantify the effects of 75 years of tillage and N fertilization on macronutrients in soil and wheat (Triticum aestivum L.) tissues grown in a winter wheat–summer fallow rotation. The experiment included three types of tillage (disc, DP; sweep, SW; and moldboard, MP) and five N application rates (0, 45, 90, 135, and 180 kg ha−1). Soil and tissue samples were analyzed for the concentration of total N, S, and C, Mehlich III extractable P, K, Mg, Ca in the soil, and the total concentration of the same nutrients in wheat tissue. Soil N concentration was significantly greater under DP (1.10 g kg−1) than under MP (1.03 g kg−1). The P concentration in upper 20 cm soil depth increased with increased N rates. Comparison of experiment plots to a nearby undisturbed pasture revealed a decline of P (32%), SOC (34%), Mg (77%), and Ca (86%) in the top 10 cm soil depth. The results suggest that DP with high N rates could reduce the macronutrient decline in soil and plant over time.

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 359 ◽  
Author(s):  
Santosh Shiwakoti ◽  
Valtcho D. Zheljazkov ◽  
Hero T. Gollany ◽  
Baoshan Xing ◽  
Markus Kleber

Tillage plays a major role in nutrient dynamics under dryland cropping systems, but there remains uncertainty regarding the long-term impacts of tillage on nutrient availability. The objective of this study was to examine the influence of tillage intensity and timing on micronutrient concentration of soils and winter wheat (Triticum aestivum L.) under dryland winter wheat–pea (Pisum sativum L.) or WW-P rotation. The treatments included moldboard tillage in fall (FT) and spring (ST), disk/chisel tillage (DT), and no-tillage (NT). The concentrations of Mehlich III extractable boron, manganese, zinc, copper, and iron in soil were unaffected by the tillage methods; however, a significant decline in extractable zinc in the top 10 cm soil was observed compared to an adjacent undisturbed grass pasture (GP) (NT: 2.3 mg kg−1 vs. GP: 6.0 mg kg−1). In the upper 10 cm soil surface, NT (123 mg kg−1) maintained the extractable manganese concentration with GP (175 mg kg−1) whereas FT (97 mg kg−1), ST (92 mg kg−1), and DT (113 mg kg−1) had lower manganese than GP. Soil pH declined in the upper 10 cm under NT more than in the rest of the WW-P treatments. The results suggest NT can play a vital role in sustaining micronutrient availability due to decreased soil pH and the greater amount of organic matter within the surface soil of NT compared to other tillage methods.


Author(s):  
Mervin St. Luce ◽  
Noura Ziadi ◽  
Martin H. Chantigny ◽  
Justin Braun

Tillage and nitrogen (N) fertilization can influence soil organic matter (SOM) dynamics, but their interactive effects remain contradictory. A long-term (25 yr) corn (Zea mays L.)-soybean (Glycine max L. Merr.) rotation was used to investigate the effect of tillage [moldboard plow (MP) and no-till (NT)] and N rates (0, 80 and 160 kg N ha-1) on soil organic carbon (SOC), total N (STN), respiration, and SOM fractions [particulate organic matter (POMC, POMN), mineral-associated organic matter (MAOMC, MAOMN), and microbial biomass (MBC, MBN)]. Results indicate that NT had 27% higher SOC and 24% higher STN than MP in the 0-20 cm depth. Furthermore, SOC and STN stocks (0-20 cm) were 22% and 20% higher, respectively, under NT than MP. There was significant stratification under NT, with a rather uniform distribution under MP. The SOM fractions and soil respiration were 28-275% and 20-83% higher at the 0-5 and 5-10 cm depths, respectively, under NT than MP. Interestingly, N fertilizer rate or its interaction with tillage had no impact, except for respiration (tillage × N rate and N rate × depth). Hence, while N addition was required for adequate grain production and increased cumulative plant C and N inputs, our findings indicate that the vertical distribution of SOC, STN and SOM fractions were affected by tillage, thereby influencing resource accessibility and subsequent dynamics of SOM fractions. Taken together, our results support the adoption of NT and judicious use of N fertilizers for enhancing topsoil SOM storage and fertility under humid temperate conditions.


Agronomy ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 96 ◽  
Author(s):  
Koffi Djaman ◽  
Michael O’Neill ◽  
Curtis Owen ◽  
Daniel Smeal ◽  
Margaret West ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 1062 ◽  
Author(s):  
Francis Azumah Chimsah ◽  
Liqun Cai ◽  
Jun Wu ◽  
Renzhi Zhang

Sustainable food production has long been a priority for mankind and this is being challenged by limited arable land, challenged landscapes, and higher human population growth. China started conservation farming around the 1950’s. However, main Conservation Tillage (CT) research started in 1992. Using a systematic meta-analysis approach, this review aims at examining China’s approach to CT and to characterize the main outcomes of long-term CT research across northern China. Data from organizations in charge of CT research in China showed an improvement in crop yield of at least 4% under double cropping systems and 6% under single cropping systems in dry areas of northern China. Furthermore, long-term CT practices were reported to have improved soil physical properties (soil structure, bulk density, pore size, and aggregate stability), soil nutrient levels, and reduction in greenhouse gas emission. Other benefits include significant increase in income levels and protection of the environment. Limitations to CT practice highlighted in this study include occasional reduction in crop yields during initial years of cropping, significant reduction in total N of soils, increase in N2O emission, and the need for customized machinery for its implementation. Outcomes of CT practice are ecologically and economically beneficial though its limitations are worth cogitating.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


2013 ◽  
pp. 101-105
Author(s):  
Enikő Vári

The experiments were carried out at the Látókép experimental station of the University of Debrecen on chernozem soil in a long term winter wheat experiment in the season of 2011 and 2012 in triculture (pea-wheat-maize) and biculture (wheat-maize) at three fertilisation levels (control, N50+P35K40, N150+P105K120). Two different cropyears were compared (2011 and 2012). The research focused on the effects of forecrop and fertilisation on the Leaf Area Index, SPAD values and the amount of yield in two different cropyears. We wanted to find out how the examined parameters were affected by the cropyear and what the relationship was between these two parameters and the changes of the amount of yield. Examining the effects of growing doses of fertilizers applied, results showed that yields increased significantly in both rotations until the N150+PK level in 2011 and 2012. By comparing the two years, results show that in 2011 there was a greater difference in yields between the rotations (7742 kg ha-1 at N150+PK in the biculture and 9830 kg ha-1 at N150+PK in the triculture). Though wheat yields following peas were greater in 2012, results equalized later on at N150+PK levels (8109–8203 kg ha-1). Due to the favorable agrotechnical factors, the leaf and the effects of the treatments grown to a great extent in 2011, while in 2012 the differences between treatments were moderate. Until the N150+PK level, nitrogen fertilisation had a notable effect on the maximum amount of SPAD values (59.1 in the case of the biculture and 54.0 in the triculture). The highest SPAD values were measured at the end of May (during the time of flowering and grain filling) in the biculture. In the triculture, showed high SPAD values from the beginning. The same tendency could be observed in the 2012 cropyear, although increasing doses of fertilizers resulted in higher SPAD values until N150+PK level only from the second measurement. Maximum SPAD values were reached at the end of May in both crop rotation system


1999 ◽  
Vol 13 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Oleg Daugovish ◽  
Drew J. Lyon ◽  
David D. Baltensperger

Field studies were conducted from 1990 through 1997 to evaluate the long-term effect of 2- and 3-yr rotations on the control of downy brome, jointed goatgrass, and feral rye in winter wheat. At the completion of the study, jointed goatgrass and feral rye densities averaged 8 plants/m2and < 0.1 plant/m2for the 2- and 3-yr rotations, respectively. Downy brome densities averaged < 0.5 plant/m2for both the 2- and 3-yr rotations, with no treatment differences observed. Winter annual grasses were not eradicated after two cycles of the 3-yr rotations, but weed densities were reduced 10-fold compared to densities after one cycle and more than 100-fold compared with the 2-yr rotations. Wheat grain contamination with dockage and foreign material followed a similar trend. The 3-yr rotations were economically competitive with 2-yr rotations and provided superior control of the winter annual grass weeds.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 58 ◽  
Author(s):  
P. Jiao ◽  
D. Xu ◽  
S. Wang ◽  
Y. Wang ◽  
K. Liu ◽  
...  

Reducing nitrogen (N) loss from agricultural soils as surface runoff is essential to prevent surface water contamination. The objective of 3-year study, 2007–09, was to evaluate surface runoff and N loss from different cropping systems. There were four treatments, including one single-crop cropping system with winter wheat (Triticum aestivum L.) followed by summer fallow (wheat/fallow), and three double-cropping systems: winter wheat/corn (Zea mays L.), wheat/cotton (Gossypium hirsutum L.), and wheat/soybean (Glycine max L. Merrill). The wheat/fallow received no fertiliser in the summer fallow period. The four cropping systems were randomly assigned to 12 plots of 5 m by 2 m on a silty clay soil. Lower runoff was found in the three double-cropping systems than the wheat/fallow, with the lowest runoff from the wheat/soybean. The three double-cropping systems also substantially reduced losses of ammonium-N (NH4+-N), nitrate-N (NO3–-N), dissolved N (DN), and total N (TN) compared with the wheat/fallow. Among the three double-cropping systems, the highest losses of NO3–-N, DN, and TN were from the wheat/cotton, and the lowest losses were from the wheat/soybean. However, the wheat/soybean increased NO3–-N and DN concentrations compared with wheat/fallow. The losses in peak events accounted for >64% for NH4+-N, 58% for NO3–-N, and 41% for DN of the total losses occurring during the 3-year experimental period, suggesting that peak N-loss events should be focussed on for the control of N loss as surface runoff from agricultural fields.


2016 ◽  
Vol 77 ◽  
pp. 166-178 ◽  
Author(s):  
Giovanna Seddaiu ◽  
Ileana Iocola ◽  
Roberta Farina ◽  
Roberto Orsini ◽  
Giuseppe Iezzi ◽  
...  

1998 ◽  
Vol 78 (3) ◽  
pp. 551-562 ◽  
Author(s):  
G. Roloff ◽  
R. de jong ◽  
C. A. Campbell ◽  
R. P. Zentner ◽  
V. M. Benson

The Environmental Policy Integrated Climate (EPIC) model is an important support tool for environmental management. Previous tests of the model have determined that it is suitable for long-term yield estimation, but it is less precise in assessing annual yield variability. To determine the reasons for the discrepancies between estimated and measured yields, we tested the ability of EPIC version 5300 to predict soil water and soil nitrogen dynamics, using data from a long-term spring wheat (Triticum aestivum L.) rotation experiment in the semiarid prairie region of Canada. Potential evapotranspiration (PET) estimates varied among methods tested: Priestley-Taylor and Penman-Monteith methods resulted in PET means that were about twice those obtained with the Hargreaves and Baier-Robertson methods. The higher PET means were associated with an excessive estimation of net radiation. We used the Baier-Robertson method to generate the other estimates reported herein. EPIC generally overestimated total soil water, but it still allowed clear differentiation among rotation phases and times of the year, and provided adequate estimates of water during the critical shot-blade stage. Water estimates by soil layer were also generally overpredicted, especially at depths from 0.15 to 0.60 m, but we were able to differentiate among rotation phases and times of the year. Precision of these latter estimates was generally low, accounting at most for 27% of the variability, and varied by soil layer, rotation phase and time of the year. Nitrate-N estimates tended to be lower than measured values, especially at depths below 0.3 m and during vegetative growth phases. However, the estimates also allowed us to distinguish among the rotation phases and times of the year. Total N and organic C were satisfactorily estimated by EPIC. In general, EPIC provided adequate long-term estimates of the environmental quality indicators tested. Key words: Environmental quality, environmental modelling, sustainability, spring wheat, fallow, potential evapotranspiration methods


Sign in / Sign up

Export Citation Format

Share Document