scholarly journals Bacillus Amyloliquefaciens-9 as an Alternative Approach to Cure Diarrhea in Saanen Kids

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 592
Author(s):  
Wenying Zhang ◽  
Huijie Xin ◽  
Nannan Jiang ◽  
Zhengbing Lv ◽  
Jianhong Shu ◽  
...  

Bacillus amyloliquefaciens-9 (GBacillus-9), derived from the intestinal tract of the white-spotted bamboo shark, secretes a variety of antimicrobial compounds that inhibit the growth of pathogenic bacteria. In this study, the role of GBacillus-9 in the prevention and treatment of Saanen kids with diarrhea was assessed. Six healthy kids (HL) and six kids with diarrhea (DL) were selected. All kids were fed with 0.3% (w/v) GBacillus-9 (spray power) in raw milk for two weeks. The proportion of kids with diarrhea decreased gradually as the trial progressed, and 100% DL kids were cured at day 15. GBacillus-9 increased the serum immunoglobulin (Ig) G, interleukin (IL)-4, and IL-6 concentration (p < 0.05). The amplicon sequencing analysis of the fecal bacterial community revealed that the fecal microbiota was remarkably different between the HL and the DL groups at day 0. After two weeks of feeding with GBacillus-9, no significant difference in fecal microbiota was observed between HL and DL groups at the phylum level. GBacillus-9 restored the intestinal microbial disorder associated with serum immunoglobulin and interleukin concentration. Correlation analysis showed that GBacillus-9 altered globulin and interleukin concentration and that immunoglobulin was associated with Firmicutes. Collectively, our results revealed that GBacillus-9 improved the gut health of kids by improving microbial homeostasis

2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Tian ◽  
Kai-yi Sun ◽  
Tian-qing Meng ◽  
Zhen Ye ◽  
Shi-meng Guo ◽  
...  

Coronavirus disease 2019 (COVID-19) has infected over 124 million people worldwide. In addition to the development of therapeutics and vaccines, the evaluation of the sequelae in recovered patients is also important. Recent studies have indicated that COVID-19 has the ability to infect intestinal tissues and to trigger alterations of the gut microbiota. However, whether these changes in gut microbiota persist into the recovery stage remains largely unknown. Here, we recruited seven healthy Chinese men and seven recovered COVID-19 male patients with an average of 3-months after discharge and analyzed their fecal samples by 16S rRNA sequencing analysis to identify the differences in gut microbiota. Our results suggested that the gut microbiota differed in male recovered patients compared with healthy controls, in which a significant difference in Chao index, Simpson index, and β-diversity was observed. And the relative abundance of several bacterial species differed clearly between two groups, characterized by enrichment of opportunistic pathogens and insufficiency of some anti-inflammatory bacteria in producing short chain fatty acids. The above findings provide preliminary clues supporting that the imbalanced gut microbiota may not be fully restored in recovered patients, highlighting the importance of continuous monitoring of gut health in people who have recovered from COVID-19.


2020 ◽  
Vol 9 (9) ◽  
pp. e412997379
Author(s):  
Bruno Fernando Oliveira Araújo ◽  
Sybelle Geórgia Mesquita da Silva ◽  
João Manoel da Silva ◽  
Cícero Cerqueira Cavalcanti Neto ◽  
Paula Cibelly Vilela da Silva ◽  
...  

Raw milk is a food with great consumption and economic value in Brazil. However, is susceptible of contamination by pathogenic bacteria. The aimed of this study was to evaluate the quality of in natura milk based on microbiological in three dairy farms, somatic cells counting (SCC), bacterial counting and his physical-chemical composition. Were made the following microbiological analysis: counting of mesophilic and psychrotrophic bacteria, coliforms at 30 ºC, coliforms at 45 ºC, Staphylococcus spp., Listeria spp., and SCC. The physical-chemical analysis was fat, protein, lactose, total solids, urea, and casein. There was no evidence of Salmonella spp. and Escherichia coli were identified in any samples.  In accordance to the microbiological standards established by Normative Instruction 76 only coliforms 30 ºC and 45 ºC counts were above the standards. There was a significant difference (p≤0.05) between the three farms studied regarding most microbiological aspects. Also, was observed difference (p≤0.05) for most of physical-chemical aspects. Overall, the milk produced in the regions of Alagoas State fails to meet just a constant criterion in the current legislation.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202049 ◽  
Author(s):  
Nobuo Watanabe ◽  
Kirill Kryukov ◽  
So Nakagawa ◽  
Junko S. Takeuchi ◽  
Meiko Takeshita ◽  
...  

2020 ◽  
Vol 8 (11) ◽  
pp. 1806
Author(s):  
Inpyo Hong ◽  
Hyun Gee Lee ◽  
Hye Lim Keum ◽  
Myong Ji Kim ◽  
Ui-Won Jung ◽  
...  

(1) Background: Dental calculus works as a niche wherein pathogenic bacteria proliferate in the oral cavity. Previous studies revealed the anticalculus activity of pyrophosphates, however there was no clinical study that evaluated microbiome changes associated with calculus inhibition. Therefore, the aim of this randomized clinical trial was to evaluate the calculus inhibition of pyrophosphate-containing toothpaste and its effect on oral microbiome changes. (2) Methods: Eighty subjects with a calculus index ≥2 on the lingual of the mandibular anterior tooth were randomly allocated to the test group that pyrophosphate-containing toothpaste was given to or the placebo control group. Full mouth debridement and standardized tooth brushing instruction were given before the allocation. Plaque index, gingival index, calculus index, probing depth, and bleeding on probing were measured at the baseline, and at 4, 8 and 12 weeks. Genomic DNA was extracted from the plaque samples collected at the baseline and at 12 weeks, and 16S ribosomal RNA gene amplicon sequencing was applied for microbiome analysis. (3) Results: None of the clinical parameters showed significant differences by visits or groups, except the plaque index of the test group, which reduced significantly between 4 and 12 weeks. A significant difference of microbiome between the baseline and 12 weeks was observed in the test group. Between baseline and 12 weeks, the proportion of Spirochetes decreased in the control group, and the proportions of Proteobacteria, Fusobacteria and Spirochetes in the phylum level and the proportions of Haemophilus, Fusobacterium and Capnocytophaga in the genus level decreased in the test group. In the test group, as plaque index decreased, Streptococcus increased, and Fusobacterium and Haemophilus parainfluenza decreased. (4) Conclusion: The use of pyrophosphate-containing toothpaste effectively inhibited the dysbiosis of the oral microbiome and the proliferation of pathogenic species in periodontal disease. Clinically, plaque formation in the pyrophosphate-containing toothpaste group was effectively decreased, however there was no significant change in calculus deposition.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Bui Phan Thu Hang ◽  
Ewa Wredle ◽  
Johan Dicksved

AbstractThe aim of this study was to characterize the colostrum and fecal microbiota in calves and to investigate whether fecal microbiota composition was related to colostrum microbiota or factors associated with calf health. Colostrum samples were collected in buckets after hand milking of 76 calving cows from 38 smallholder dairy farms. Fecal samples were taken directly from the rectum of 76 calves at birth and at 14 days age. The bacterial community structure in colostrum and feces was analyzed by terminal restriction fragment length polymorphism for all samples, and the microbial composition was determined by 16S rRNA gene amplicon sequencing for a subset of the samples (8 colostrum, 40 fecal samples). There was a significant difference in fecal microbiota composition between day 0 and day 14 samples, but no associations between the microbiota and average daily gain, birth weight, or transfer of passive immunity. At 14 days of age, Faecalibacterium and Butyricicoccus were prevalent in higher relative abundances in the gut of healthy calves compared to calves with diarrhea that had been treated with antimicrobials. Colostrum showed great variation in composition of microbiota but no association to fecal microbiota. This study provides the first insights into the composition of colostrum and fecal microbiota of young dairy calves in southern Vietnam and can form the basis for future more detailed studies.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Jianbo Zhang ◽  
Peng Wang ◽  
Renqing Dingkao ◽  
Mei Du ◽  
Anum Ali Ahmad ◽  
...  

Background: The gut microbiota plays an important role in the health and production of animals. However, little information is available on the dynamic variations and comparison of intestinal microbiota in post-weaning yak calves living on the QTP. Methods: We explored the fecal bacterial microbiota succession of yak calves at different months after early weaning (60 d) compared with cattle calves by 16S rRNA gene amplicon sequencing and functional composition prediction. Results: We found no significant difference in blood biochemical parameters related to glucose and lipid metabolism between yaks and calves in different months after weaning. The core fecal bacterial microbiota from both species of calves was dominated by Ruminococcaceae, Rikenellaceae, and Bacteroidaceae. The fecal microbial community has a great alteration within the time after weaning in both cattle and yak calves, but cattle showed a larger change. After five months, the microbiota achieves a stable and concentrated state. This is also similar to the functional profile. Conclusions: Based on the exploration of dynamic changes in the fecal microbiota at an early stage of life, our results illustrated that there were no negative effects of intestinal microbiota succession on yak calves when early weaning was employed.


Author(s):  
Annemarie Siebert ◽  
Katharina Hofmann ◽  
Lena Staib ◽  
Etienne V. Doll ◽  
Siegfried Scherer ◽  
...  

Abstract The highly complex raw milk matrix challenges the sample preparation for amplicon-sequencing due to low bacterial counts and high amounts of eukaryotic DNA originating from the cow. In this study, we optimized the extraction of bacterial DNA from raw milk for microbiome analysis and evaluated the impact of cycle numbers in the library-PCR. The selective lysis of eukaryotic cells by proteinase K and digestion of released DNA before bacterial lysis resulted in a high reduction of mostly eukaryotic DNA and increased the proportion of bacterial DNA. Comparative microbiome analysis showed that a combined enzymatic and mechanical lysis procedure using the DNeasy® PowerFood® Microbial Kit with a modified protocol was best suitable to achieve high DNA quantities after library-PCR and broad coverage of detected bacterial biodiversity. Increasing cycle numbers during library-PCR systematically altered results for species and beta-diversity with a tendency to overrepresentation or underrepresentation of particular taxa. To limit PCR bias, high cycle numbers should thus be avoided. An optimized DNA extraction yielding sufficient bacterial DNA and enabling higher PCR efficiency is fundamental for successful library preparation. We suggest that a protocol using ethylenediaminetetraacetic acid (EDTA) to resolve casein micelles, selective lysis of somatic cells, extraction of bacterial DNA with a combination of mechanical and enzymatic lysis, and restriction of PCR cycles for analysis of raw milk microbiomes is optimal even for samples with low bacterial numbers. Key points • Sample preparation for high-throughput 16S rRNA gene sequencing of raw milk microbiota. • Reduction of eukaryotic DNA by enzymatic digestion. • Shift of detected microbiome caused by high cycle numbers in library-PCR.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 18-19
Author(s):  
Martin Nyachoti ◽  
Jinyoung Lee

Abstract Dietary manipulation with respect to crude protein (CP) content has been suggested as part of the overall strategy for the nutritional management of weanling pigs to improve intestinal health. This has focused on the use of low CP diets that are appropriately fortified with crystalline amino acids (AA). Use of low CP diets minimizes the amount of undigested dietary protein entering the large intestine and being subjected to bacterial fermentation. This is important because protein fermentation leads to the production of toxic metabolites and encourages the proliferation of pathogenic bacteria, thus causing enteric problems such as post-weaning diarrhea. There have been considerable efforts to elucidate the mechanisms underlying the potential benefits of feeding low CP diets to piglets. In addition to impacting the intestinal microbiome and its associated activities, it is clear that feeding a low CP diets interferes with the attachment of enterotoxigenic E. coli to the intestinal mucosa, thus minimizing its ability to cause disease. Another area of interest has been how use low CP diets in combination with other dietary manipulations to further enhance intestinal health in piglets. In this regards, existing evidence suggests that a low CP diet may be used in combination with other dietary interventions, such as probiotics and dietary fiber, to further enhance gut health outcomes in piglets. Also, addressing the potential reduction in piglet performance when feeding low CP diets by looking more into diet formulation to avoid deficiencies of essential AA or even some of non-essential AA, is critical for successful use low CP diets. Based on the available information, a reduction of dietary protein by four percentage units coupled with appropriate AA supplementation can be a useful dietary strategy to improve intestinal health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Sanchis-Artero ◽  
Juan Francisco Martínez-Blanch ◽  
Sergio Manresa-Vera ◽  
Ernesto Cortés-Castell ◽  
Marina Valls-Gandia ◽  
...  

AbstractIntestinal dysbiosis is key in the onset and development of Crohn’s disease (CD). We evaluated the microbiota changes in CD patients before and after a six-month anti-TNF treatment, comparing these changes with the microbiota of healthy subjects. This prospective multicenter observational study involved 27 CD patients initiating anti-TNF treatment and 16 healthy individuals. Inflammatory activity was determined at baseline, 3 and 6 months, classifying patients into responders and non-responders. Fecal microbiota was analyzed by massive genomic sequencing thought 16S rRNA amplicon sequencing before and after six months of anti-TNF treatment. The CD cohort showed a decrease in genera of the class Clostridia, short-chain fatty acid producers, and an increase in the phylum Proteobacteria (p < 0.01) versus the healthy cohort. After anti-TNF treatment, the phylum Proteobacteria also increased in non-responders versus responders (13/27) (p < 0.005), with the class Clostridia increasing. In addition, alpha diversity increased in responders versus non-responders (p < 0.01), tending towards eubiosis. An association was found (p < 0.001) in the F.prausnitzii/E.coli ratio between responders and non-responders. The F/E ratio was the most accurate biomarker of anti-TNF response (area under the curve 0.87). Thus, anti-TNF treatment allows partial restoration of intestinal microbiota in responders and the F.prausnitzii/E.coli ratio can provide a reliable indicator of response to anti-TNF in CD.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2180
Author(s):  
Jessica M. Moon ◽  
Peter Finnegan ◽  
Richard A. Stecker ◽  
Hanna Lee ◽  
Kayla M. Ratliff ◽  
...  

Glucosamine (GLU) is a natural compound found in cartilage, and supplementation with glucosamine has been shown to improve joint heath and has been linked to reduced mortality rates. GLU is poorly absorbed and may exhibit functional properties in the gut. The purpose of this study was to examine the impact of glucosamine on gastrointestinal function as well as changes in fecal microbiota and metabolome. Healthy males (n = 6) and females (n = 5) (33.4 ± 7.7 years, 174.1 ± 12.0 cm, 76.5 ± 12.9 kg, 25.2 ± 3.1 kg/m2, n = 11) completed two supplementation protocols that each spanned three weeks separated by a washout period that lasted two weeks. In a randomized, double-blind, placebo-controlled, crossover fashion, participants ingested a daily dose of GLU hydrochloride (3000 mg GlucosaGreen®, TSI Group Ltd., USA) or maltodextrin placebo. Study participants completed bowel habit and gastrointestinal symptoms questionnaires in addition to providing a stool sample that was analyzed for fecal microbiota and metabolome at baseline and after the completion of each supplementation period. GLU significantly reduced stomach bloating and showed a trend towards reducing constipation and hard stools. Phylogenetic diversity (Faith’s PD) and proportions of Pseudomonadaceae, Peptococcaceae, and Bacillaceae were significantly reduced following GLU consumption. GLU supplementation significantly reduced individual, total branched-chain, and total amino acid excretion, with no glucosamine being detected in any of the fecal samples. GLU had no effect on fecal short-chain fatty acids levels. GLU supplementation provided functional gut health benefits and induced fecal microbiota and metabolome changes.


Sign in / Sign up

Export Citation Format

Share Document