scholarly journals Dietary Synbiotics Can Help Relieve the Impacts of Deltamethrin Toxicity of Nile Tilapia Reared at Low Temperatures

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1790
Author(s):  
Mahmoud S. Gewaily ◽  
Safaa E. Abdo ◽  
Eman M. Moustafa ◽  
Marwa F. AbdEl-kader ◽  
Ibrahim M. Abd El-Razek ◽  
...  

The optimal water temperature for the normal growth of Nile tilapia is between 26 and 28 °C, and the toxicity of pesticides is strongly related to water temperature. An alternate approach to augmenting the resistance of fish to ambient water toxicity and low water temperature via synbiotic feeding was proposed. In this study, fish were allocated into four groups with 10 fish in each replicate, where they were fed a basal diet or synbiotics (550 mg/kg) and kept at a suboptimal water temperature (21 ± 2 °C). The prepared diets were fed to Nile tilapia for 30 days with or without deltamethrin (DMT) ambient exposure (15 μg/L). The groups were named control (basal diet without DMT toxicity), DMT (basal diet with DMT toxicity), synbiotic (synbiotics without DMT toxicity), and DMT + synbiotic (synbiotics with DMT toxicity). The results displayed upregulated transcription of catalase, glutathione peroxidase, and interferon (IFN-γ) genes caused by DMT exposure and synbiotic feeding when compared with the controls. Moreover, HSP70 and CASP3 genes displayed increased transcription caused by DMT exposure without synbiotic feeding. However, fish fed with synbiotics showed downregulated HSP70 and CASP3 gene expressions. The transcription of IL-1β and IL-8 genes were also decreased by DMT exposure, while fish fed synbiotics showed upregulated levels. DMT exposure resulted in irregular histopathological features in gills, intestine, spleen, and liver tissues, while fish fed synbiotics showed regular, normal, and protected histopathological images. Our results indicated that dietary synbiotics ameliorated histopathological damages in DMT-exposed tilapia through alleviation of oxidative stress and inflammation as well as enhancing the immunity.

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2035
Author(s):  
Chompunut Lumsangkul ◽  
Wanaporn Tapingkae ◽  
Korawan Sringarm ◽  
Sanchai Jaturasitha ◽  
Chinh Le Xuan ◽  
...  

We investigated, herein, the effects of dietary inclusion of sugarcane bagasse powder (SB) on Nile tilapia development, mucosal and serum immunities, and relative immune and antioxidant genes. Fish (15.12 ± 0.04 g) were provided a basal diet (SB0) or basal diet incorporated with SB at 10 (SB10), 20 (SB20), 40 (SB40), or 80 (SB80) g kg−1 for 8 weeks. Our results demonstrated that the dietary incorporation of sugarcane bagasse powder (SB) at 20 and 40 g kg−1 significantly ameliorated FW, WG, and SGR as opposed to fish fed basal, SB10, and SB80 diets. However, no significant changes in FCR and survivability were observed between the SB supplemented diets and the control (basal diet). The mucosal immunity exhibited significantly higher SMLA and SMPA activities (p < 0.005) in fish treated with SB diets after eight weeks. The highest SMLA and SMPA levels were recorded in fish fed SB80 followed by SB20, SB40, and SB10, respectively. For serum immunity, fish fed SB incorporated diets significantly ameliorated SL and RB levels (p < 0.05) compared with the control. However, SP was not affected by the inclusion of SB in any diet throughout the experiment. The expression of IL1, IL8, LBP, GSTa, GPX, and GSR genes in the fish liver was significantly increased in fish fed the SB20 and SB10 diets relative to the basal diet fed fish (p < 0.05); whereas only the IL8, LBP, and GPX genes in the intestines were substantially augmented via the SB20 and SB80 diets (p < 0.05). IL1 and GSR were not influenced by the SB incorporated diets (p > 0.05). In summary, sugarcane bagasse powder (SB) may be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression in Nile tilapia.


2020 ◽  
Author(s):  
James Diana

Abstract Efficient supplementary feeding will utilize not only the feed added to the pond, but also natural food. Feeding improves the growth rate of fish in a pond only when the fish are food limited. Natural foods may provide all of the necessary nutrition for normal growth of small fish, and if growth begins to decline at a larger size, supplementary feeding should yield higher growth rates. One experiment compared the use of fertilizer alone, feed alone, and a combination of feed and fertilizer for growth and production of Nile tilapia (Oreochromis niloticus). Ponds receiving feed and fertilizer had higher growth rates than ponds with feed alone, and both showed considerably higher growth rate than ponds with fertilizer alone. Feeding was necessary to grow fish to a size of over 200 g in a reasonable amount of time. A second experiment tested the possibility that feeding at reduced ration and allowing the consumption of natural food might give a comparable growth rate to feeding alone. In this experiment, full satiation ration, 75% satiation ration, or even 50% satiation ration resulted in similar mean weights at harvest, about 400 g after 150 days. These results indicate that it may be efficient to simply feed the fish at about half of their maximum ration and allow them to eat natural food for the other half of their growth, if the pond is managed well. Economic analysis showed that fertilization resulted in $1,891 ha-1 year-1 of profit, feed only lost almost $3,000 ha-1 year-1, 75% feeding lost $258, 50% feeding yielded $1,765 ha-1 year-1, and 25% feeding yielded $155 ha-1 year-1. If the growth rate were linearly extrapolated until the fish reached 500 g and were then harvested, the 75% feeding would yield $4,835 ha-1 year-1 and the 50% feeding $5,865 ha-1 year-1. A third experiment was conducted to evaluate the timing when first feeding should occur. In this case, fish in ponds were fed once they reached 50, 100, 150, 200 or 250 g in size. The fish grew similarly before they were fed, and then grew again similarly after feeding, with a growth rate under fertilization of about 1 g day-1, and a growth rate under feeding of about 3 g day-1. Fish fed first at 50 or 100 g reached the same ultimate size by the end of the experiment and had similar production levels. Fish first fed at 150 or 200 g also showed similar results and, finally, fish fed at 250 g never reached the targeted size. These results indicate that it is most efficient to wait until the fish reach 100 g before commencing artificial feeding. Economic evaluation showed an annual net profit of $3,700 ha-1 year-1 when the fish were fed first at 50 g, $6,160 at 100 g, $4,800 at 150 g, $1,800 at 200 g and $3,600 at 250 g. Clearly, efficient feeding systems produce higher incomes than less efficient systems, and fertilization alone, if the fish reach a targeted size that has a higher economic value.


Author(s):  
Thomas S. Bianchi ◽  
Elizabeth A. Canuel

This chapter focuses on several classes of polar lipids, including alkenones, which are di-, tri-, and tetra-unsaturated long-chain ketones. These compounds are produced by a restricted number of species of prymnesiophyte algae (coccolithophorid alga Emiliania huxleyi), living over a wide temperature range. Prymnesiophytes are able to live under different temperature regimes because they are able to regulate the degree of unsaturation of these compounds; as ambient water temperature decreases, unsaturation increases. Long-chain ketones are more stable than most unsaturated lipids and can survive diagenesis. Because of these properties, alkenones have been used widely as paleothermometers. Paleoclimate studies of continental environments have been hampered by the lack of a useful temperature proxy. Glycerol dialkyl glycerol tetraethers (GDGTs) occur ubiquitously, including sites where alkenones are not produced due to the absence/low abundance of alkenone-producing algae. The TEX86 index, based on the number of cyclopentane rings in the GDGTs, provides a useful paleotemperature index for lakes and other sites where alkenones are not produced. The analysis of intact polar molecules is also becoming more widespread with the advent of liquid chromatography mass spectrometry techniques.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Jiao Song ◽  
Qinghe Li ◽  
Nadia Everaert ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
...  

Abstract We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)–infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P &lt; 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P &lt; 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P &lt; 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P &lt; 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2983
Author(s):  
Fagr Kh. Abdel-Gawad ◽  
Wagdy K. B. Khalil ◽  
Samah M. Bassem ◽  
Vikas Kumar ◽  
Costantino Parisi ◽  
...  

A two-fold integrated research study was conducted; firstly, to understand the effects of copper (Cu) and zinc (Zn) on the growth and oxidative stress in Nile tilapia, Oreochromis niloticus; secondly, to study the beneficial effects of the duckweed Lemna minor L. as a heavy metal remover in wastewater. Experiments were conducted in mesocosms with and without duckweed. Tilapia fingerlings were exposed to Cu (0.004 and 0.02 mg L−1) and Zn (0.5 and 1.5 mg L−1) and fish fed for four weeks. We evaluated the fish growth performance, the hepatic DNA structure using comet assay, the expression of antioxidative genes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx and glutathione-S-transferase, GST) and GPx and GST enzymatic activity. The results showed that Zn exhibited more pronounced toxic effects than Cu. A low dose of Cu did not influence the growth whereas higher doses of Cu and Zn significantly reduced the growth rate of tilapia compared to the control, but the addition of duckweed prevented weight loss. Furthermore, in the presence of a high dose of Cu and Zn, DNA damage decreased, antioxidant gene expressions and enzymatic activities increased. In conclusion, the results suggest that duckweed and Nile tilapia can be suitable candidates in metal remediation wastewater assessment programs.


2016 ◽  
Vol 46 (9) ◽  
pp. 1675-1677 ◽  
Author(s):  
Thiago Luís Magnani Grassi ◽  
Marcelo Tacconi de Siqueira Marcos ◽  
Elisa Helena Giglio Ponsano

ABSTRACT: The purpose of this research was to investigate the progress of the rancidity in Nile tilapia diets containing bacterial biomass of Rubrivivax gelatinosus . Six experimental treatments comprised basal diet (negative control), diet with asthaxanthin (positive control) and 4 diets with different concentrations of the bacterial biomass. The thiobarbituric acid assay for rancidity analyses were accomplished after 6 and 12 months of diets storage. It was concluded that Rubrivivax gelatinosus biomass minimized the racidity in Nile tilapia diets in 32.52 to 44.72% at 6 months and in 37.85 to 52.37% at 12 months of storage.


Author(s):  
Francisco Alarcón Elvira ◽  
Violeta T. Pardío Sedas ◽  
David Martínez Herrera ◽  
Rodolfo Quintana Castro ◽  
Rosa María Oliart Ros ◽  
...  

Expression of the regulatory stress rpoS gene controls the transcription of cspA genes, which are involved in survival and adaptation to low temperatures. The purpose of this study was to assess the growth kinetics of naturally occurring V. parahaemolyticus in shellstock oysters and in vitro and the cold-shock-induced expression of the rpoS and cspA gene response in vitro during postharvest refrigeration. Naturally contaminated eastern oysters (Crassostrea virginica) and pathogenic (Vp-tdh) and nonpathogenic (Vp-tlh) isolates were stored at 7 ± 1 °C for 168 h and 216 h, respectively. The regulatory stress (rpos) and cold-shock (cspA) gene expressions were determined by reverse transcription PCR. At 24 h, the (Vp-tdh) strain grew faster (p < 0.05) than the (Vp-tlh) strain in oysters (λ = 0.33, 0.39, respectively) and in vitro (λ = 0.89, 37.65, respectively), indicating a better adaptation to cold shock for the (Vp-tdh) strain in live oysters and in vitro. At 24 h, the (Vp-tdh) strain rpoS and cspA gene expressions were upregulated by 1.9 and 2.3-fold, respectively, but the (Vp-tlh) strain rpoS and cspA gene expressions were repressed and upregulated by −0.024 and 1.9-fold, respectively. The V. parahaemolyticus strains that were isolated from tropical oysters have adaptive expression changes to survive and grow at 7 °C, according to their virulence.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mingxin Li ◽  
Lidong Zhai ◽  
Wanfu Wei

Rheumatoid arthritis, a synthesized form of adjuvant arthritis exhibited throughout many animal species, inhibits liver function and circulation of IGF-I and contributes to the degradation of skeletal muscle mass. One of the primary goals of the present study is determining whether a high-Methionine (high-Met) diet is capable of reducing the adverse effects of arthritis, namely, loss of body mass. Following adjuvant injection, forty arthritic rats were randomly assigned to either a control group with a basal diet or a high-Met group with the same basal diet + 0.5% Methionine. After 14 days all rats were terminated. The high-Met group exhibited an increase in body weight and food intake in comparison with the control group (P<0.05). High-Met diet debilitated arthritis-induced surges in the gastrocnemius in both atrogin-1 and the MuRF1 expressions; however, it was observed to have little to no effect on atrogin-1 and MuRF1 gene expression in soleus. At the same time, high-Met diet rats experienced a rise in IGF-I, with lowering of IGFBP-3 gene expression in the gastrocnemius and the soleus. These data suggest that arthritis severity can be partly attenuated by high-Met diet.


Sign in / Sign up

Export Citation Format

Share Document