scholarly journals Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 289
Author(s):  
Qiuping Wang ◽  
Cheng Zhang ◽  
Youhua Long ◽  
Xiaomao Wu ◽  
Yue Su ◽  
...  

Tetramycin, a novel polyene agriculture antibiotic, has excellent antimicrobial activity against many plant pathogens. In this study, the antimicrobial activities of tetramycin and conventional antibiotics on eight common pathogens and their field control efficacies against four serious diseases in kiwifruit were investigated. The results show that 0.3% tetramycin aqueous solutions (AS) exhibited the superior antibacterial and antifungal activity against Pseudomonas syringae pv. actinidiae, Pseudomonas fulva, Agrobacterium tumefaciens, Botryosphaeriadothidea, Phomopsis sp., Alternaria tenuissima, Armillariella mellea and Phytophthora cactorum of kiwifruit pathogens with EC50 values of 1.21, 1.24, 0.72, 0.14, 0.09, 0.16, 0.06 and 0.17 mg kg−1, respectively. These EC50 values of tetramycin were much higher than those of conventional kasugamycin, zhongshengmycin or polyoxin. Meanwhile, 0.3% tetramycin AS possessed the good field control efficacies for canker, soft rot, blossom blight and brown spot disease of kiwifruit with 74.45, 83.55, 84.74 and 89.62%. Moreover, 0.3% tetramycin AS application notably increased fruit resistance substances contents, activated fruit superoxide dismutase and polyphenoloxidase activities, as well as remarkably enhanced fruit growth, improved fruit quality and storability. This study highlights that tetramycin can be used as a preferred alternative to conventional antibiotics in kiwifruit production.

2017 ◽  
Vol 9 (4) ◽  
pp. 61 ◽  
Author(s):  
Alfred Kumakech ◽  
Hans. J. L. Jørgensen ◽  
David B. Collinge ◽  
Richard Edema ◽  
Patrick Okori

Black Sigatoka is a major disease of East African highland cooking bananas in Uganda. Aqueous extracts of Azadirachta indica, Cinnamomum zeylanicum and Capsicum annuum have shown the potential to reduce Black Sigatoka in banana plantlets. The mechanisms by which plant extracts confer protection against plant pathogens has previously been reported to involve activation of defence and direct antimicrobial activity. In the current study, both antimicrobial activities of selected extracts were studied as well as expression of three defence-related genes using quantitative real-time PCR. Gene expression was compared in susceptible (cv. Musakala, genomic group AAA-EA) and resistant (cv. Kayinja, genomic group ABB) banana cultivars. Additionally, Musakala treated with A indica extract at 1 day before inoculation (DBI) was tested for induction of defence-related genes at 0, 10 and 20 days after inoculation (DAI). Pathogenesis-related genes (PR-1 and PR-3) and non-expressor of PR-genes (NPR1B) were up-regulated in the resistant cultivar. The genes analysed responded at late time points to M. fijiensis inoculation in both extract-treated and control plants in the susceptible cv. Musakala. On the other hand, A. indica and C. annuum completely inhibited mycelial growth of M. fijiensis at 30% (w/v). These findings suggest that the effect of plant extracts on Black Sigatoka is strongly associated with the direct antimicrobial effects.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Hamid Sarhadi ◽  
Mohammad Hasan Jahandar ◽  
Abbas Tanhaeian

: The resistance of microorganisms to conventional antibiotics has prompted researchers to produce new antimicrobial compounds. Antimicrobial peptides can be alternatives to chemical antibiotics. Antimicrobial peptides are produced approximately by all living organisms to fight infection. Lactoferrin is an iron glycoprotein that plays an important role in the immune system. Lactoferricin and lactoferrampine have stronger antimicrobial activities than lactoferrin. In this study, we investigated the inhibitory effects of a combination of chimeric bovine lactoferricin and lactoferrampine on microorganisms including Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Enterococcus faecalis, and Listeria monocytogenes, as well as plant pathogens including Pseudomonas syringae pv. syringae, Pseudomonas viridiflava, Xanthomonas translucens, Xanthomonas perforans, Erwinia amylovora, Pectobacterium carotovorum, and Agrobacterium tumefaciens. The results showed that chimeric bovine lactoferrin had a good inhibitory effect against pathogenic microorganisms and plant pathogens. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for pathogenic microorganisms Salmonella typhimurium and Listeria monocytogenes were 7.562 µg/mL and 15.125 µg/mL, respectively, which showed the highest sensitivity to chimeric bovine lactoferrin. The MIC and MBC for plant pathogens were 0.497 µg/mL and 0.997 µg/mL, respectively, which were related to Pseudomonas syringae pv. syringae and it showed the highest sensitivity to chimeric bovine lactoferrin.


2004 ◽  
Vol 49 (1) ◽  
pp. 109-116
Author(s):  
A.C. Odebode ◽  
S.J.M. Madachi ◽  
C.C. Joseph ◽  
B.N. Irungu

Antimicrobial activities of crude extract, Caulindole D, a mixture of Caulindole E and F, Pinocembrin and an Oxyheptanoid (Clestochlamic acid) from stem bark of Isolona cauliflora and Cleistochlamys krikii on Pseudomonas phaseolicola, Fusarium solani, Botryodiploida theobromae Aspergillus niger and Aspergillus flavus have been investigated. An in vitro bioassay test showed that the crude dichloro-methane extract from C. krikii and a very strong antimicrobial property. The pure compound had strong to moderate inhibitory effect on Pseudomonas syringae pv. phaseolicola and Botryodiplodia theobromae. The pure compounds from Cleistochlamus krikii had more pronounced inhibitory activities than the pure compounds from Isola cauliflora. At lower concentration of 100-200 ppm, the crude extract of Caulindole, mixture of Caulindole E and F, Pinocembrion and Oxyheptanoid had effect on most of the investigated plant pathogens. Higher concentration of 500-1000 ppm had moderate to weak effect on the Aspergillus spp.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 547a-547
Author(s):  
Geunhwa Jung ◽  
James Nienhuis ◽  
Dermot P. Coyne ◽  
H.M. Ariyarathne

Common bacterial blight (CBB), bacterial brown spot (BBS), and halo blight (HB), incited by the bacterial pathogens Xanthomonas campestris pv. phaseoli (Smith) Dye, Pseodomonas syringae pv. syringa, and Pseudomonas syringae pv. phaseolicola, respectively are important diseases of common bean. In addition three fungal pathogens, web blight (WB) Thanatephorus cucumeris, rust Uromyces appendiculatus, and white mold (WM) Sclerotinia sclerotiorum, are also destructive diseases attacking common bean. Bean common mosaic virus is also one of most major virus disease. Resistance genes (QTLs and major genes) to three bacterial (CBB, BBS, and HB), three fungal (WB, rust, and WM), and one viral pathogen (BCMV) were previously mapped in two common bean populations (BAC 6 × HT 7719 and Belneb RR-1 × A55). The objective of this research was to use an integrated RAPD map of the two populations to compare the positions and effect of resistance QTL in common bean. Results indicate that two chromosomal regions associated with QTL for CBB resistance mapped in both populations. The same chromosomal regions associated with QTL for disease resistance to different pathogens or same pathogens were detected in the integrated population.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


2019 ◽  
Vol 15 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Cigdem Karaaslan ◽  
Yalcin Duydu ◽  
Aylin Ustundag ◽  
Can O. Yalcin ◽  
Banu Kaskatepe ◽  
...  

Background: The benzazole nucleus is found in many promising small molecules such as anticancer and antibacterial agents. Bendamustine (Alkylating agent), Nocodazole (Mitotic inhibitor), Veliparib (PARP inhibitor), and Glasdegib (SMO inhibitor) are being clinically used as anticancer therapeutic which bear benzimidazole moiety. Based on the principle of bioisosterism, in the present work, 23 compounds belonging to 2-(3,4-dimethoxyphenyl)benzazoles and imidazopyridine series were synthesized and evaluated for their anticancer and antimicrobial activities. Objective: A series of new 2-(3,4-dimethoxyphenyl)-1H-benz(or pyrido)azoles were synthesized and evaluated for their anticancer and antimicrobial activities. Method: N-(5-chloro-2-hdroxyphenyl)-3,4-dimethoxybenzamide 1, was obtained by the amidation of 2-hydroxy-5-chloroaniline with 3,4-dimethoxybenzoic acid by using 1,1&'-carbonyldiimidazole. Cyclization of 1 to benzoxazole derivative 2, was achieved by p-toluenesulfonic acid. Other 1H-benz(or pyrido)azoles were prepared by the reaction between 2-aminothiophenol, ophenylenediamine, o-pyridinediamine with sodium metabisulfite adduct of 3,4-dimethoxybenzaldehyde. The NMR assignments of the dimethoxy groups were established by the NOESY spectra. Results: Compound 12, bearing two chlorine atoms at the 5(4) and 7(6) positions of the benzene moiety of benzimidazole was found the most potent analogue against A549 cells with the GI50 value of 1.5 μg/mL. Moreover, 24 showed remarkable cell growth inhibition against MCF-7 and HeLa cells with the GI50 values of 7 and 5.5 μg/mL, respectively. The synthesized compounds have no important antibacterial and antifungal activities. Conclusion: It could be concluded that the introduction of di-chloro atoms at the phenyl ring of 2-(3,4-dimethoxyphenyl)-1H-benzimidazoles increases significant cytotoxicity to selected human tumor cell lines in comparison to other all benzazoles synthesized. Unsubstituted 2-(3,4- dimethoxyphenyl)-imidazopyridines also gave good inhibitory profile against A549 and HeLa cells.


2021 ◽  
Vol 22 (5) ◽  
pp. 2643
Author(s):  
Mohamed F. Hassan ◽  
Abdelrahman M. Qutb ◽  
Wubei Dong

Antimicrobial peptides (AMPs) are small molecules consisting of less than fifty residues of amino acids. Plant AMPs establish the first barrier of defense in the innate immune system in response to invading pathogens. The purpose of this study was to isolate new AMPs from the Zea mays L. inbred line B73 and investigate their antimicrobial activities and mechanisms against certain essential plant pathogenic bacteria. In silico, the Collection of Anti-Microbial Peptides (CAMPR3), a computational AMP prediction server, was used to screen a cDNA library for AMPs. A ZM-804 peptide, isolated from the Z. mays L. inbred line B73 cDNA library, was predicted as a new cationic AMP with high prediction values. ZM-804 was tested against eleven pathogens of Gram-negative and Gram-positive bacteria and exhibited high antimicrobial activities as determined by the minimal inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). A confocal laser scanning microscope observation showed that the ZM-804 AMP targets bacterial cell membranes. SEM and TEM images revealed the disruption and damage of the cell membrane morphology of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato (Pst) DC3000 caused by ZM-804. In planta, ZM-804 demonstrated antimicrobial activity and prevented the infection of tomato plants by Pst DC3000. Moreover, four virulent phytopathogenic bacteria were prevented from inducing hypersensitive response (HR) in tobacco leaves in response to low ZM-804 concentrations. ZM-804 exhibits low hemolytic activity against mouse red blood cells (RBCs) and is relatively safe for mammalian cells. In conclusion, the ZM-804 peptide has a strong antibacterial activity and provides an alternative tool for plant disease control. Additionally, the ZM-804 peptide is considered a promising candidate for human and animal drug development.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1228
Author(s):  
Carla Colque-Little ◽  
Daniel Buchvaldt Amby ◽  
Christian Andreasen

The journey of the Andean crop quinoa (Chenopodium quinoa Willd.) to unfamiliar environments and the combination of higher temperatures, sudden changes in weather, intense precipitation, and reduced water in the soil has increased the risk of observing new and emerging diseases associated with this crop. Several diseases of quinoa have been reported in the last decade. These include Ascochyta caulina, Cercospora cf. chenopodii, Colletotrichum nigrum, C. truncatum, and Pseudomonas syringae. The taxonomy of other diseases remains unclear or is characterized primarily at the genus level. Symptoms, microscopy, and pathogenicity, supported by molecular tools, constitute accurate plant disease diagnostics in the 21st century. Scientists and farmers will benefit from an update on the phytopathological research regarding a crop that has been neglected for many years. This review aims to compile the existing information and make accurate associations between specific symptoms and causal agents of disease. In addition, we place an emphasis on downy mildew and its phenotyping, as it continues to be the most economically important and studied disease affecting quinoa worldwide. The information herein will allow for the appropriate execution of breeding programs and control measures.


Author(s):  
Pu Liu ◽  
Wang Xiaojie ◽  
Dong Hongjie ◽  
Jianbin Lan ◽  
Kuan Liang ◽  
...  

Diaporthe spp. are critical plant pathogens that cause wood cankers, wilt, dieback, and fruit rot in a wide variety of economic plant hosts and are regarded as one of the most acute threats faced by kiwifruit industry worldwide. Diaporthe phragmitis strain NJD1 is a highly pathogenic isolate of soft rot of kiwifruit. Here, we present a high-quality genome-wide sequence of D. phragmitis NJD1 that was assembled into 28 contigs containing a total size of 58.33 Mb and N50 length of 3.55 Mb. These results lay a solid foundation for understanding host–pathogen interaction and improving disease management strategies.


Sign in / Sign up

Export Citation Format

Share Document