scholarly journals Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences

Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 58 ◽  
Author(s):  
Marianna Criscuolo ◽  
Enrico Maria Trecarichi

Patients suffering from hematological malignancies are at high risk for severe infections, including in particular bloodstream infections, which represent one of the most frequent life-threatening complications for these patients, with reported mortality rates reaching 40%. Furthermore, a worrisome increase in antimicrobial resistance of Gram-negative bacteria (e.g., cephalosporin- and/or carbapenem-resistant Enterobacteriaceae and multidrug-resistant (MDR) Pseudomonas aeruginosa) involved in severe infectious complications among patients with hematological malignancies has been reported during the last years. The two novel combination of cephalosporins and β-lactamase inhibitors, ceftolozane/tazobactam and ceftazidime/avibactam, were recently approved for treatment of complicated intra-abdominal and urinary tract infections and nosocomial pneumonia and display activity against several MDR Gram-negative strains. Although not specifically approved for neutropenic and/or cancer patients, these drugs are used in this setting due to increasing rates of infections caused by MDR Gram-negative bacteria. The aim of this review is to describe the actual evidence from scientific literature about the “real-life” use of these two novel drugs in patients with hematological malignancies and infections caused by MDR Gram-negative bacteria.

2021 ◽  
Author(s):  
Xukai Jiang ◽  
Nitin A. Patil ◽  
Mohammad A. K. Azad ◽  
Hasini Wickremasinghe ◽  
Heidi Yu ◽  
...  

Multidrug-resistant Gram-negative bacteria have been an urgent threat to global public health. Novel antibiotics are desperately needed to combat these 'superbugs'.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuan Liu ◽  
Ziwen Tong ◽  
Jingru Shi ◽  
Yuqian Jia ◽  
Tian Deng ◽  
...  

AbstractAntimicrobial resistance has been a growing concern that gradually undermines our tradition treatment regimens. The fact that few antibacterial drugs with new scaffolds or targets have been approved in the past two decades aggravates this crisis. Repurposing drugs as potent antibiotic adjuvants offers a cost-effective strategy to mitigate the development of resistance and tackle the increasing infections by multidrug-resistant (MDR) bacteria. Herein, we found that benzydamine, a widely used non‐steroidal anti‐inflammatory drug in clinic, remarkably potentiated broad-spectrum antibiotic-tetracyclines activity against a panel of clinically important pathogens, including MRSA, VRE, MCRPEC and tet(X)-positive Gram-negative bacteria. Mechanistic studies showed that benzydamine dissipated membrane potential (▵Ψ) in both Gram-positive and Gram-negative bacteria, which in turn upregulated the transmembrane proton gradient (▵pH) and promoted the uptake of tetracyclines. Additionally, benzydamine exacerbated the oxidative stress by triggering the production of ROS and suppressing GAD system-mediated oxidative defensive. This mode of action explains the great bactericidal activity of the doxycycline-benzydamine combination against different metabolic states of bacteria involve persister cells. As a proof-of-concept, the in vivo efficacy of this drug combination was evidenced in multiple animal infection models. These findings indicate that benzydamine is a potential tetracyclines adjuvant to address life-threatening infections by MDR bacteria.


2015 ◽  
Vol 15 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Naomi Ochieng' ◽  
Humphrey Okechi ◽  
Susan Ferson ◽  
A. Leland Albright

OBJECT Ventriculoperitoneal shunt (VPS) infections are a major cause of morbidity and mortality in patients with hydrocephalus. Most data about these infections come from the Western literature. Few data about infecting organisms in Africa are available, yet knowledge of these organisms is important for the prevention and treatment of infectious complications. The purpose of this study was to determine the organisms cultured from infected shunts in a rural Kenyan hospital. METHODS The authors conducted a retrospective study of patients with VPS infections recorded in the neurosurgical database of BethanyKids at Kijabe Hospital between September 2010 and July 2012. RESULTS Among 53 VPS infections confirmed by culture, 68% occurred in patients who were younger than 6 months. Seventy-nine percent of the infections occurred within 2 months after shunt insertion. Only 51% of infections were caused by Staphylococcus species (Staphylococcus aureus 25%, other Staphylococcus species 26%), whereas 40% were caused by gram-negative bacteria. All S. aureus infections and 79% of other Staphylococcus infections were sensitive to cefazolin, but only 1 of 21 gram-negative bacteria was sensitive to it. The majority of gram-negative bacterial infections were multidrug resistant, but 17 of the 20 gram-negative bacteria were sensitive to meropenem. Gram-negative bacterial infections were associated with worse outcomes. CONCLUSIONS The high proportion of gram-negative infections differs from data in the Western literature, in which Staphylococcus epidermidis is by far the most common organism. Once a patient is diagnosed with a VPS infection in Kenya, immediate treatment is recommended to cover both gram-positive and gram-negative bacterial infections. Data from other Sub-Saharan countries are needed to determine if those countries have the same increased frequency of gram-negative infections.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


2021 ◽  
Vol 34 (Suppl 1) ◽  
pp. 41-43
Author(s):  
José Tiago Silva ◽  
Francisco López-Medrano

Cefiderocol is a novel catechol-substituted siderophore cephalosporin that binds to the extracellular free iron, and uses the bacterial active iron transport channels to penetrate in the periplasmic space of Gram-negative bacteria (GNB). Cefiderocol overcomes many resistance mechanisms of these bacteria. Cefiderocol is approved for the treatment of complicated urinary tract infections, hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia in the case of adults with limited treatment options, based on the clinical data from the APEKS-cUTI, APEKS-NP and CREDIBLE-CR trials. In the CREDIBLE-CR trial, a higher all-cause mortality was observed in the group of patients who received cefiderocol, especially those with severe infections due to Acinetobacter spp. Further phase III clinical studies are necessary in order to evaluate cefiderocol´s efficacy in the treatment of serious infections.


2019 ◽  
Vol 69 (Supplement_7) ◽  
pp. S544-S551 ◽  
Author(s):  
Yoshinori Yamano

AbstractCarbapenem-resistant gram-negative bacteria including Enterobacteriaceae as well as nonfermenters, such as Pseudomonas aeruginosa and Acinetobacter baumannii, have emerged as significant global clinical threats. Although new agents have recently been approved, none are active across the entire range of resistance mechanisms presented by carbapenem-resistant gram-negative bacteria. Cefiderocol, a novel siderophore cephalosporin, has been shown in large surveillance programs and independent in vitro studies to be highly active against all key gram-negative causative pathogens isolated from patients with hospital-acquired or ventilator-associated pneumonia, bloodstream infections, or complicated urinary tract infections. The improved structure, the novel mode of entry into bacteria, and its stability against carbapenemases enables cefiderocol to exhibit high potency against isolates that produce carbapenemases of all classes or are resistant due to porin channel mutations and/or efflux pump overexpression. Resistance to cefiderocol is uncommon and appears to be multifactorial.


Author(s):  
Sharon Ong’uti ◽  
Mary Czech ◽  
Elizabeth Robilotti ◽  
Marisa Holubar

Abstract Cefiderocol is a novel injectable siderophore cephalosporin which hijacks the bacterial iron transport machinery to facilitate cell entry and achieve high periplasmic concentrations. It has broad in vitro activity against gram-negative bacteria, including multidrug resistant (MDR) organisms like carbapenem resistant Enterobacterales (CRE), carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii. It was approved by the Food and Drug Administration (FDA) for the treatment of complicated urinary tract infections and nosocomial pneumonia based on clinical trials demonstrating noninferiority to comparators. In this review, we summarize the available in vitro and clinical data, including recent evidence from 2 phase III clinical trials (APEKS-NP and CREDIBLE-CR), and discuss the place of cefiderocol in the clinician’s armamentarium against MDR gram-negative infections.


Sign in / Sign up

Export Citation Format

Share Document