scholarly journals Insulin-like Growth Factor II Prevents MPP+ and Glucocorticoid Mitochondrial-Oxidative and Neuronal Damage in Dopaminergic Neurons

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Silvia Claros ◽  
Pablo Cabrera ◽  
Nadia Valverde ◽  
Silvana Y. Romero-Zerbo ◽  
Manuel Víctor López-González ◽  
...  

Stress seems to contribute to Parkinson’s disease (PD) neuropathology, probably by dysregulation of the hypothalamic–pituitary–adrenal axis. Key factors in this pathophysiology are oxidative stress and mitochondrial dysfunction and neuronal glucocorticoid-induced toxicity. The insulin-like growth factor II (IGF-II), a pleiotropic hormone, has shown antioxidant and neuroprotective effects in some neurodegenerative disorders. Our aim was to examine the protective effect of IGF-II on a dopaminergic cellular combined model of PD and mild to moderate stress measuring oxidative stress parameters, mitochondrial and neuronal markers, and signalling pathways. IGF-II counteracts the mitochondrial-oxidative damage produced by the toxic synergistic effect of corticosterone and 1-methyl-4-phenylpyridinium, protecting dopaminergic neurons from death and neurodegeneration. IGF-II promotes PKC activation and nuclear factor (erythroid-derived 2)-like 2 antioxidant response in a glucocorticoid receptor-dependent pathway, preventing oxidative cell damage and maintaining mitochondrial function. Thus, IGF-II is a potential therapeutic tool for treatment and prevention of disease progression in PD patients suffering mild to moderate emotional stress.

2019 ◽  
Vol 20 (23) ◽  
pp. 5832 ◽  
Author(s):  
Kwon ◽  
Lee ◽  
Park ◽  
Ra ◽  
Lee ◽  
...  

In our ongoing research to discover natural products with neuroprotective effects, hyperoside (quercetin 3-O-galactoside) was isolated from Acer tegmentosum, which has been used in Korean traditional medicine to treat liver-related disorders. Here, we demonstrated that hyperoside protects cultured dopaminergic neurons from death via reactive oxygen species (ROS)-dependent mechanisms, although other relevant mechanisms of hyperoside activity remain largely uncharacterized. For the first time, we investigated the neuroprotective effects of hyperoside on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in neurons, and the possible underlying mechanisms. Hyperoside significantly ameliorated the loss of neuronal cell viability, lactate dehydrogenase release, excessive ROS accumulation and mitochondrial membrane potential dysfunction associated with 6-OHDA-induced neurotoxicity. Furthermore, hyperoside treatment activated the nuclear erythroid 2-related factor 2 (Nrf2), an upstream molecule of heme oxygenase-1 (HO-1). Hyperoside also induced the expression of HO-1, an antioxidant response gene. Remarkably, we found that the neuroprotective effects of hyperoside were weakened by an Nrf2 small interfering RNA, which blocked the ability of hyperoside to inhibit neuronal death, indicating the vital role of HO-1. Overall, we show that hyperoside, via the induction of Nrf2-dependent HO-1 activation, suppresses neuronal death caused by 6-OHDA-induced oxidative stress. Moreover, Nrf2-dependent HO-1 signaling activation represents a potential preventive and therapeutic target in Parkinson′s disease management.


2019 ◽  
Vol 317 (2) ◽  
pp. C235-C243 ◽  
Author(s):  
Sudhir Pandey ◽  
Wei-Wen Kuo ◽  
Chia-Yao Shen ◽  
Yu-Lan Yeh ◽  
Tsung-Jung Ho ◽  
...  

Doxorubicin (DOX) is an anthracycline antibiotic commonly employed for the treatment of various cancers. However, its therapeutic uses are hampered by side effects associated with cumulative doses during the course of treatment. Whereas deregulation of autophagy in the myocardium has been involved in a variety of cardiovascular diseases, the role of autophagy in DOX-induced cardiomyopathy remains debated. Our earlier studies have shown that DOX treatment in a rat animal model leads to increased expression of the novel stress-inducible protein insulin-like growth factor II receptor-α (IGF-IIRα) in cardiac tissues, which exacerbated the cardiac injury by enhancing oxidative stress and p53-mediated mitochondria-dependent cardiac apoptosis. Through this study, we investigated the contribution of IGF-IIRα to dysregulation of autophagy in heart using both in vitro H9c2 cells (DOX treated, 1 µM) and in vivo transgenic rat models (DOX treated, 5 mg/kg ip for 6 wk) overexpressing IGF-IIRα specifically in the heart. We found that IGF-IIRα primarily localized to mitochondria, causing increased mitochondrial oxidative stress that was severely aggravated by DOX treatment. This was accompanied by a significant perturbation in mitochondrial membrane potential and increased leakage of cytochrome c, causing increased cleaved caspase-3 activity. There were significant alterations in phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated Unc-51 like kinase-1 (p-ULK1), PARKIN, PTEN-induced kinase 1 (PINK1), microtubule-associated protein 1 light chain 3 (LC3), and p62 proteins, which were more severely disrupted under the combined effect of IGF-IIRα overexpression plus DOX. Finally, LysoTracker Red staining showed that IGF-IIRα overexpression causes lysosomal impairment, which was rescued by rapamycin treatment. Taken together, we found that IGF-IIRα leads to mitochondrial oxidative stress, decreased antioxidant levels, disrupted mitochondrial membrane potential, and perturbed mitochondrial autophagy contributing to DOX-induced cardiomyopathy.


1995 ◽  
Vol 15 (6) ◽  
pp. 1022-1031 ◽  
Author(s):  
Diane T. Stephenson ◽  
Karen Rash ◽  
James A. Clemens

The mechanisms underlying the response of the brain to ischemia are not fully understood. Biochemical and morphological changes following neocortical infarction can be investigated in rats using a model of focal cerebral ischemia induced by unilateral occlusion of the middle cerebral artery (MCA). Evaluation of ischemic damage often employs conventional histologic stains. Immunocytochemistry can be used as a valuable tool in this model to define changes in specific proteins of interest. In this study, an antiserum raised against insulin-like growth factor II (IGF-II) receptor was used to evaluate changes of IGF-II receptor immunoreactivity in the cerebral cortex of rats 4 and 7 days following permanent MCA occlusion. IGF-II receptor immunoreactivity was found to be associated with neocortical pyramidal neurons within the core of the ischemic infarct itself. The staining intensity was markedly elevated above that observed in nonischemic neurons. Immunopositive neurons exhibited a punctate staining pattern. These neurons appeared to correspond to argentophilic neurons, as defined by modified Bielschowsky silver staining. Evaluation of other neuronal markers revealed the absense of immunoreactivity for neuron-specific enolase and for tyrosine hydroxylase within the ischemic area. These observations show an increase in a specific growth factor receptor within neurons in the ischemic core of a focal infarct several days following permanent focal infarction, a time when neurons are presumed to be dead. The significance and the potential role of IGF-II receptor in lesion-induced plasticity are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Miaomiao Meng ◽  
Lijuan Zhang ◽  
Di AI ◽  
Hongyun Wu ◽  
Wei Peng

Accumulation of β-amyloid (Aβ) causes oxidative stress, which is the major pathological mechanism in Alzheimer’s disease (AD). β-asarone could reduce Aβ-induced oxidative stress and neuronal damage, but the molecular mechanism remains elusive. In this study, we used an Aβ-stimulated PC12 cell model to explore the neuroprotective effects and potential mechanisms of β-asarone. The results showed that β-asarone could improve cell viability and weaken cell damage and apoptosis. β-asarone could also decrease the level of ROS and MDA; increase the level of SOD, CAT, and GSH-PX; and ameliorate the mitochondrial membrane potential. Furthermore, β-asarone could promote the expression of Nrf2 and HO-1 by upregulating the level of PI3K/Akt phosphorylation. In conclusion, β-asarone could exert neuroprotective effects by modulating the P13K/Akt/Nrf2 signaling pathway. β-asarone might be a promising therapy for AD.


Redox Biology ◽  
2021 ◽  
pp. 102095
Author(s):  
Elisa Martín-Montañez ◽  
Nadia Valverde ◽  
David Ladrón de Guevara-Miranda ◽  
Estrella Lara ◽  
Yanina S. Romero-Zerbo ◽  
...  

2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


Sign in / Sign up

Export Citation Format

Share Document