scholarly journals Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications

Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 462 ◽  
Author(s):  
Mauro ◽  
Fava ◽  
Spampinato ◽  
Aleo ◽  
Melilli ◽  
...  

The valorization of food wastes is a challenging opportunity for a green, sustainable, and competitive development of industry. Approximately 30 million m3 of olive mill wastewater (OMWW) are produced annually in the world as a by-product of the olive oil extraction process. In addition to being a serious environmental and economic issue because of their polluting load, OMWW can also represent a precious resource of high-added-value molecules such as polyphenols that show acclaimed antioxidant and anti-inflammatory activities and can find useful applications in the pharmaceutical industry. In particular, the possibility to develop novel nutraceutical ophthalmic formulations containing free radical scavengers would represent an important therapeutic opportunity for all inflammatory diseases of the ocular surface. In this work, different adsorbents were tested to selectively recover a fraction that is rich in polyphenols from OMWW. Afterward, cytotoxicity and antioxidant/anti-inflammatory activities of polyphenolic fraction were evaluated through in vitro tests. Our results showed that the fraction (0.01%) had no toxic effects and was able to protect cells against oxidant and inflammatory stimulus, reducing reactive oxygen species and TNF-α levels. Finally, a novel stable ophthalmic hydrogel containing a polyphenolic fraction (0.01%) was formulated and the technical and economic feasibility of the process at a pre-industrial level was investigated.

Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 602 ◽  
Author(s):  
Rosa Tundis ◽  
Carmela Conidi ◽  
Monica R. Loizzo ◽  
Vincenzo Sicari ◽  
Alfredo Cassano

The valorisation of food wastes is a challenging opportunity for the green, sustainable, and competitive development of industry. The recovery of phenols contributes to the sustainability of olive waste sector, reducing its environmental impact and promoting the development of innovative formulations of interest for pharmaceutical, nutraceutical, and cosmeceutical applications. In this work, olive mill wastewater was treated through a combination of microfiltration (MF), nanofiltration (NF), and reverse osmosis (RO) in a sequential design to produce polyphenol-enriched fractions that have been investigated for their chemical profile using ultra-high-performance liquid chromatography (UHPLC), and their potential antioxidant, hypolipidemic, and hypoglycaemic activities. RO retentate exhibited the highest content of hydroxytyrosol, tyrosol, oleuropein, verbascoside, vanillic acid, and luteolin. In particular, a content of hydroxytyrosol of 1522.2 mg/L, about five times higher than the MF feed, was found. RO retentate was the most active extract in all in vitro tests. Interestingly, this fraction showed a 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) radicals scavenging activity with an IC50 value of 6.9 μg/mL and a potential inhibition of lipid peroxidation evaluated by the β-carotene bleaching test with IC50 values of 25.1 μg/mL after 30 min of incubation. Moreover, RO retentate inhibited α-amylase and α-glucosidase with IC50 values of 65.3 and 66.2 μg/mL, respectively.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


2018 ◽  
Vol 4 (3) ◽  
pp. 49-62
Author(s):  
Evgeniya А. Beskhmelnitsyna ◽  
Dmitriy V. Kravchenko ◽  
Lev N. Sernov ◽  
Irina N. Dolzhikova ◽  
Tatyana V. Avtina ◽  
...  

Introduction. Doctors of almost all specialties have to deal with the problem of pain and its relief. According to the literature, almost 30 million people daily take analgesics from the group of non-opioid analgesics, but in more than half of them 4-6 hours after taking the medication, the severity of pain is unchanged. Objective. to search for the most active molecules potential selective inhibitors of the TRPA1 ion channel with further investigation of their pharmacodynamic effects, toxicological safety, pharmacokinetic parameters and organ distribution, as well as to assess their impact on the psychoemotional state, general locomotor activity levels and anxiety in laboratory animals. Materials and methods. According to the results of in vitro tests, the most active molecule under code ZC02-0012 was selected from the pool of candidates. Further its analgesic activity was evaluated using an acetic acid-induced writhing test and a hot plate test; its anti-inflammatory activity was studied in the acute exudative paw edema model; in the open field and elevated plus-maze tests the influence of ZC02-0012 on the general locomotor activity levels and the anxiety of the laboratory animals was studied. The pharmacokinetic parameters and organ distribution of the substance ZC02-0012 were studied using a liquid chromatograph with an operating pressure range of 0-60 mPa (Thermo Scientific Dionex UltiMate 3000). Results and discussion. According to the results of in vitro tests, it was found that IC50 of the TRPA1 selective inhibitor under laboratory code ZC02-0012 was 91.3 nmol. The preclinical studies showed that ZC02-0012 possessed pronounced analgesic and anti-inflammatory activities and absence of the influence on the behavior and anxiety of the laboratory animals. Absolute bioavailability of ZC02-0012 in rabbits was 47%, while ZC02-0012 was intensely distributed into organs and tissues with a high level of blood circulation. The highest content of ZC02-0012 is typical of liver, kidneys and lungs, the lowest – for muscle tissue. Most of the substance is undergone rapid biotransformation and excreted as metabolites.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 369
Author(s):  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Eva Juengel ◽  
Felix K.-H. Chun ◽  
Igor Tsaur ◽  
...  

Bladder cancer patients whose tumors develop resistance to cisplatin-based chemotherapy often turn to natural, plant-derived products. Beneficial effects have been particularly ascribed to polyphenols, although their therapeutic relevance when resistance has developed is not clear. The present study evaluated the anti-tumor potential of polyphenol-rich olive mill wastewater (OMWW) on chemo-sensitive and cisplatin- and gemcitabine-resistant T24, RT112, and TCCSUP bladder cancer cells in vitro. The cells were treated with different dilutions of OMWW, and tumor growth and clone formation were evaluated. Possible mechanisms of action were investigated by evaluating cell cycle phases and cell cycle-regulating proteins. OMWW profoundly inhibited the growth and proliferation of chemo-sensitive as well as gemcitabine- and cisplatin-resistant bladder cancer cells. Depending on the cell line and on gemcitabine- or cisplatin-resistance, OMWW induced cell cycle arrest at different phases. These differing phase arrests were accompanied by differing alterations in the CDK-cyclin axis. Considerable suppression of the Akt-mTOR pathway by OMWW was observed in all three cell lines. Since OMWW blocks the cell cycle through the manipulation of the cyclin-CDK axis and the deactivation of Akt-mTOR signaling, OMWW could become relevant in supporting bladder cancer therapy.


2012 ◽  
Vol 66 (12) ◽  
pp. 2505-2516 ◽  
Author(s):  
J. M. Ochando-Pulido ◽  
A. Martinez-Ferez

Direct disposal of the heavily polluted effluent from olive oil industry (olive mill wastewater, OMW) to the environment or to domestic wastewater treatment plants is actually prohibited in most countries, and conventional treatments are ineffective. Membranes are currently one of the most versatile technologies for environmental quality control. Notwithstanding, studies on OMW reclamation by membranes are still scarce, and fouling inhibition and prediction to improve large-scale membrane performance still remain unresolved. Consequently, adequately targeted pretreatment for the specific binomium membrane-feed, as well as optimized operating conditions for the proper membranes, is today's challenge to ensure threshold flux values. Several membrane materials, configurations and pore sizes have been elucidated, and also different pretreatments including sedimentation, centrifugation, biosorption, sieving, filtration and microfiltration, various types of flocculation as well as advance oxidation processes have been applied so far. Recovery of potential-value compounds, such as a variety of polyphenols highlighting oleuropein and hydroxytyrosol, has been attempted too. All this research should constitute the starting point to proceed with OMW purification beyond recycling for irrigation or depuration for sewer discharge, with the aim of complying with standards to reuse the effluent in the olive oil production process, together with cost-effective recovery of added-value compounds.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 284 ◽  
Author(s):  
Benjamin J. Swartzwelter ◽  
Francesco Barbero ◽  
Alessandro Verde ◽  
Maria Mangini ◽  
Marinella Pirozzi ◽  
...  

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie Flore Djuichou Nguemnang ◽  
Eric Gonzal Tsafack ◽  
Marius Mbiantcha ◽  
Ateufack Gilbert ◽  
Albert Donatien Atsamo ◽  
...  

Dissotis thollonii Cogn. (Melastomataceae) is a tropical plant widely used in traditional Cameroonian medicine to relieve and treat many pathologies. It is widespread in the western region where it is used to treat typhoid fever, gastrointestinal disorders, and inflammatory diseases. The purpose of this study is to scientifically demonstrate the anti-inflammatory and antiarthritic properties of the aqueous and ethanolic extracts of the leaves of Dissotis thollonii. The anti-inflammatory properties were evaluated in vitro by inhibition tests for cyclooxygenase, 5-lipoxygenase, protein denaturation, extracellular ROS production, and cell proliferation; while antiarthritic properties were evaluated in vivo in rats using the zymosan A-induced monoarthritis test and the CFA-induced polyarthritis model. This study shows that aqueous and ethanolic extracts at a concentration of 1000 μg/ml inhibit the activity of cyclooxygenase (47.07% and 63.36%) and 5-lipoxygenase (66.79% and 77.7%) and protein denaturation (42.51% and 44.44%). Similarly, both extracts inhibited extracellular ROS production (IC50 = 5.74 μg/ml and 2.96 μg/ml for polymorphonuclear leukocytes, 7.47 μg/ml and 3.28 μg ml for peritoneal macrophages of mouse) and cell proliferation (IC50 = 16.89 μg/ml and 3.29 μg/ml). At a dose of 500 mg/kg, aqueous and ethanolic extracts significantly reduce edema induced by zymosan A (69.30% and 81.80%) and CFA (71.85% and 79.03%). At the same dose, both extracts decreased sensitivity to mechanical hyperalgesia with 69.00% and 70.35% inhibition, respectively. Systemic and histological analyzes show that both extracts maintain the studied parameters very close to normal and greatly restored the normal architecture of the joint in animals. Dissotis thollonii would therefore be a very promising source for the treatment of inflammatory diseases.


Author(s):  
Tatyana S. Khlebnicova ◽  
Yuri A. Piven ◽  
Fedor A. Lakhvich ◽  
Iryna V. Sorokina ◽  
Tatiana S. Frolova ◽  
...  

Background: Prevention and treatment of chronic inflammatory diseases require effective and low-toxic medicines. Molecular hybridization is an effective strategy to enhance the biological activity of new compounds. Triterpenoid scaffolds are in the focus of attention owing to their anti-inflammatory, antiviral, antiproliferative, and immunomodulatory activities. Heteroprostanoids have different pleiotropic effects in acute and chronic inflammatory processes. Objective: The study aimed to develop structurally new and low toxic anti-inflammatory agents via hybridization of betulinic acid with azaprostanoic acids. Methods: A series of betulinic acid-azaprostanoid hybrids was synthesized. The synthetic pathway included the transformation of betulin via Jones' oxidation into betulonic acid, reductive amination of the latter and coupling obtained by 3β-amino-3-deoxybetulinic acid with the 7- or 13-azaprostanoic acids and their homo analogues. The hybrids 1-9 were investigated in vivo on histamine-, formalin- and concanavalin A-induced mouse paw edema models and two models of pain - the acetic acid-induced abdominal writhing and the hotplate test. The hybrids were in vitro evaluated for cytotoxic activity on cancer (MCF7, U- 87 MG) and non-cancer humane cell lines. Results: In the immunogenic inflammation model, the substances showed a pronounced anti-inflammatory effect, which was comparable to that of indomethacin. In the models of the exudative inflammation, none of the compounds displayed a statistically significant effect. The hybrids produced weak or moderate analgesic effects. All the agents revealed low cytotoxicity on human immortalized fibroblasts and cancer cell lines compared with 3β- amino-3-deoxybetulinic acid and doxorubicin. Conclusion: The results indicate that the principal anti-inflammatory effect of hybrids is substantially provided with the triterpenoid scaffold and in some cases with the azaprostanoid scaffold, but the latter makes a significant contribution to reducing the toxicity of hybrids. Hybrid 1 is of interest as a potent low toxic agent against immune-mediated inflammation.


2020 ◽  
Vol 295 (32) ◽  
pp. 10926-10939 ◽  
Author(s):  
Benoit Darlot ◽  
James R. O. Eaton ◽  
Lucia Geis-Asteggiante ◽  
Gopala K. Yakala ◽  
Kalimuthu Karuppanan ◽  
...  

Chemokines mediate leukocyte migration and homeostasis and are key targets in inflammatory diseases including atherosclerosis, cytokine storm, and chronic autoimmune disease. Chemokine redundancy and ensuing network robustness has frustrated therapeutic development. Salivary evasins from ticks bind multiple chemokines to overcome redundancy and are effective in several preclinical disease models. Their clinical development has not progressed because of concerns regarding potential immunogenicity, parenteral delivery, and cost. Peptides mimicking protein activity can overcome the perceived limitations of therapeutic proteins. Here we show that peptides possessing multiple chemokine-binding and anti-inflammatory activities can be developed from the chemokine-binding site of an evasin. We used hydrogen–deuterium exchange MS to map the binding interface of the evasin P672 that physically interacts with C–C motif chemokine ligand (CCL) 8 and synthesized a 16-mer peptide (BK1.1) based on this interface region in evasin P672. Fluorescent polarization and native MS approaches showed that BK1.1 binds CCL8, CCL7, and CCL18 and disrupts CCL8 homodimerization. We show that a BK1.1 derivative, BK1.3, has substantially improved ability to disrupt P672 binding to CCL8, CCL2, and CCL3 in an AlphaScreen assay. Using isothermal titration calorimetry, we show that BK1.3 directly binds CCL8. BK1.3 also has substantially improved ability to inhibit CCL8, CCL7, CCL2, and CCL3 chemotactic function in vitro. We show that local as well as systemic administration of BK1.3 potently blocks inflammation in vivo. Identification and characterization of the chemokine-binding interface of evasins could thus inspire the development of novel anti-inflammatory peptides that therapeutically target the chemokine network in inflammatory diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Tarfa Albrahim ◽  
Moonerah M. Alnasser ◽  
Mashael R. Al-Anazi ◽  
Muneera D. ALKahtani ◽  
Saad Alkahtani ◽  
...  

Background. Pulicaria crispa (P. crispa) is a plant from the Compositae family that exhibits antioxidant, anti-inflammatory, antibacterial, and cytotoxic activities. Objective. The current study aimed at investigating the immunomodulatory effects of P. crispa extract in lipopolysaccharide- (LPS-) stimulated human monocytic THP-1 cells. Methods. To induce macrophage differentiation, THP-1 cell lines were treated with phorbol-12-myristate 13-acetate, followed by exposure to LPS with or without 50 or 100 μg/ml of P. crispa extract. The following tests were employed to test the immunomodulatory effects of the extract: MTT assay, ELISA, Western blotting analysis, cell migration and phagocytosis assays, and Annexin V staining method. Results. Exposure to 100 μg/ml P. crispa extract significantly reduced THP-1 cell proliferation, migration, and phagocytosis (in LPS-stimulated cells, but not in unstimulated cells). Moreover, the extract alone significantly reduced the rate of THP-1 cell apoptosis, while it increased the rate of late apoptosis. Molecular investigations showed that treatment with P. crispa extract significantly upregulated the expression of ERK1, p-MAPK, P-P38, and Bcl2, while it significantly reduced the expression of ERK5, Bax, NF-κB, P-NF-κB, CCL1, CCL2, CCL5, CCL22, CXCL1, and CXCL10. Conclusion. Pulicaria crispa extract exhibited anti-inflammatory, antiproliferative, antimigratory, and antiphagocytic effects in LPS-stimulated THP-1 cells. Future studies should investigate these mechanisms in animal models with chronic inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document