scholarly journals Effects of Lespedeza Bicolor Extract on Regulation of AMPK Associated Hepatic Lipid Metabolism in Type 2 Diabetic Mice

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 599 ◽  
Author(s):  
Younmi Kim ◽  
Heaji Lee ◽  
Sun Yeou Kim ◽  
Yunsook Lim

Lespedeza bicolor (LB) is one of the ornamental plants used for the treatment of inflammation caused by oxidative damage. However, its beneficial effects on hyperglycemia-induced hepatic damage and the related molecular mechanisms remain unclear. We hypothesized that Lespedeza bicolor extract (LBE) would attenuate hyperglycemia-induced liver injury in type 2 diabetes mellitus (T2DM). Diabetes was induced by a low dosage of streptozotocin (STZ) injection (30 mg/kg) with a high fat diet in male C57BL/6J mice. LBE was administered orally at 100 mg/kg or 250 mg/kg for 12 weeks. LBE supplementation regardless of dosage ameliorated plasma levels of hemoglobin A1c (HbA1c) in diabetic mice. Moreover, both LBE supplementations upregulated AMP-activation kinase (AMPK), which may activate sirtuin1 (SIRT) associated pathway accompanied by decreased lipid synthesis at low dose of LBE supplementation. These changes were in part explained by reduced protein levels of oxidative stress (nuclear factor erythroid 2-related factor 2 (Nrf2) and catalase), inflammation (nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide synthases (iNOS)), and fibrosis (α-smooth muscle actin (α-SMA) and protein kinase C (PKC)) in diabetic liver. Taken together, LBE might be a potential nutraceutical to ameliorate hepatic damage by regulation of AMPK associated pathway via oxidative stress, inflammation, and fibrosis in T2DM.

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Lara Macchioni ◽  
Davide Chiasserini ◽  
Letizia Mezzasoma ◽  
Magdalena Davidescu ◽  
Pier Luigi Orvietani ◽  
...  

Age-related retinal degenerations, including age-related macular degeneration (AMD), are caused by the loss of retinal pigmented epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD, deeply linked to the aging process, also involves oxidative stress and inflammatory responses. However, the molecular mechanisms contributing to the shift from healthy aging to AMD are still poorly understood. Since RPE cells in the retina are chronically exposed to a pro-oxidant microenvironment throughout life, we simulated in vivo conditions by growing ARPE-19 cells in the presence of 10 μM H2O2 for several passages. This long-term oxidative insult induced senescence in ARPE-19 cells without affecting cell proliferation. Global proteomic analysis revealed a dysregulated expression in proteins involved in antioxidant response, mitochondrial homeostasis, and extracellular matrix organization. The analyses of mitochondrial functionality showed increased mitochondrial biogenesis and ATP generation and improved response to oxidative stress. The latter, however, was linked to nuclear factor-κB (NF-κB) rather than nuclear factor erythroid 2–related factor 2 (Nrf2) activation. NF-κB hyperactivation also resulted in increased pro-inflammatory cytokines expression and inflammasome activation. Moreover, in response to additional pro-inflammatory insults, senescent ARPE-19 cells underwent an exaggerated inflammatory reaction. Our results indicate senescence as an important link between chronic oxidative insult and detrimental chronic inflammation, with possible future repercussions for therapeutic interventions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yue Fu ◽  
Jianping Jia

BackgroundNeuroinflammation and oxidative stress are two major pathological characteristics of Alzheimer’s disease (AD). Amyloid-β oligomers (AβO), a toxic form of Aβ, promote the neuroinflammation and oxidative stress in the development of AD. Isoliquiritigenin (ISL), a natural flavonoid isolated from the root of liquorice, has been shown to exert inhibitory effects on inflammatory response and oxidative stress.ObjectivesThe main purpose of this study is to assess the influence of ISL on inflammatory response and oxidative stress in BV2 cells stimulated with AβO, and to explore the underlying molecular mechanisms.Methods3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H- tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) cytotoxicity assays were used to assess the toxic or protective effects of ISL. The expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assays. Morphological changes in BV2 cells were assessed by immunofluorescence method. Nitric oxide (NO) assay kit was used to determinate the NO production. Western blot, qRT-PCR and immunofluorescence were used to explore the underlying molecular mechanisms.ResultsISL treatment reduced the production of inflammatory cytokines and NO, and alleviated the morphological changes in BV2 cells induced by AβO. ISL treatment further protected N2a cells from the toxic medium of AβO-stimulated BV2 cells. ISL activated nuclear factor erythroid-2 related factor 2 (Nrf2) signaling and suppressed nuclear factor-κB (NF-κB) signaling in BV2 cells.ConclusionISL suppresses AβO-induced inflammation and oxidative stress in BV2 cells via the regulation of Nrf2/NF-κB signaling. Therefore, ISL indirectly protects neurons from the damage of toxic conditioned media.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Golbarg Rahimi ◽  
Salime Heydari ◽  
Bahareh Rahimi ◽  
Navid Abedpoor ◽  
Iman Niktab ◽  
...  

Abstract Background SPTC is a mix of four herbal components (Salvia officinalis, Panax ginseng, Trigonella foenum-graeceum, and Cinnamomum zeylanicum) which might be prevented the development of AGE rich diet-induced diabetic complication and liver injury through activated the nuclear factor erythroid-2-related-factor-2 (Nrf2) pathway. Nrf2, as a master regulator of antioxidant response elements by activating cytoprotective genes expression, is decreased oxidative stress that associated with hyperglycemia and increases insulin sensitivity. the aim of this study was to assess whether the combination therapy of SPTC along with exercise or metformin moderate oxidative stress related liver injurie with more favorable effects in the treatment of AGE rich diet-induced type 2 diabetic mice. Methods We induced diabetes in C57BL/6 mice by AGE using a diet supplementation and limitation of physical activity. After 16 weeks of intervention, AGE fed mice were compared to control mice. Diabetic mice were assigned into seven experimental groups (each group; n = 5): diabetic mice, diabetic mice treated with SPTC (130 mg/kg), diabetic mice treated with Salvia Officinalis (65 mg/kg), diabetic mice treated with metformin (300 mg/kg), diabetic mice with endurance exercise training, diabetic mice treated with SPTC + metformin (130/300 mg/kg), diabetic mice treated with SPTC + exercise training. Results SPTC + exercise and SPTC + metformin reduced diabetic complications like gain weight, water and calorie intake, blood glucose, insulin, and GLUT4 content more efficiently than each treatment. These combinations improved oxidative stress hemostasis by activating the Nrf2 signaling pathway and attenuating keap1 protein more significantly. Conclusion Eventually, combined treatment of SPTC with exercise or metformin as a novel approach had more beneficial effects to prevent the development of diabetes and oxidative stress associated with hyperglycemia.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1882
Author(s):  
Quynh T. N. Nguyen ◽  
Minzhe Fang ◽  
Nhung Quynh Do ◽  
Jeehaeng Jeong ◽  
Sarang Oh ◽  
...  

Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from North America that is well known for treating microorganism infection and promoting wound healing, was investigated for its photoprotective effects. The biological effects of AC were studied on two in vitro models, namely, lipopolysaccharide (LPS)-induced macrophages and ultraviolet B (UVB)-irradiated dermal fibroblasts, to characterize its underlying molecular mechanisms. The results showed that AC decreased the mRNA levels of inflammatory mediators in sensitized macrophages, including cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Moreover, AC alleviated UVB-induced photoaging in dermal fibroblasts by restoring procollagen synthesis. This resulted from the regulation of excessive reactive oxygen species (ROS) by AC, which was mediated by the activation of the antioxidative system nuclear factor erythroid 2-related factor 2 (NRF2). AC also alleviated oxidative stress and inflammatory responses by inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK) and interfering with the nuclear translocation of the immune regulator nuclear factor of activated T-cells 1 (NFATc1). In conclusion, the protective effects of AC on skin cellular components suggested that it has the potential for use in the development of drugs and cosmetics that protect the skin from UVB-induced chronic inflammation and aging.


2017 ◽  
Vol 9 (2) ◽  
pp. 73 ◽  
Author(s):  
Asri Hendrawati

BACKGROUND: Increasing free radicals and oxidative stress due to chronic hyperglycemia in type-2 diabetes mellitus (DM) promotes the activity of endogenic antioxidative genes. Nuclear factor erythroid 2-related factor 2 (Nrf2) expression and activity are important to regulate the production of endogenic antioxidative enzymes.CONTENT: Normally, Nrf2 is bound by protein Kelchlike ECH-associated protein-1 (Keap1) in the cytosol. Stimulation from oxidative stress causes the release of Nrf2 from Keap1. When activated, Nrf2 enters the nucleus and activates the antioxidant response element (ARE). This will further increase the production of antioxidative enzymes, such as catalase, nitrite oxydase and heme oxygenase-1. The discovery of oxidative stress, as the cause of complications in DM, gives rise to the idea of developing a treatment which can increase the expression and activity of Nrf2, one of which is a flavonoid antioxidant.SUMMARY: Currently, nuclear factor erythroid 2-related factor 2 is an important target in the therapy of DM.KEYWORDS: Nrf2, type-2 diabetes mellitus, endogenic antioxidative enzymes, oxidative stress, antioxidants


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 370 ◽  
Author(s):  
Miao Yu ◽  
Zhi-Yuan Wei ◽  
Zhou-Heng Xu ◽  
Jia-Qi Pan ◽  
Jian-Huan Chen

Deoxynivalenol (DON) is a kind of natural pollutant belonging to the trichothecenes family. The aim of this study is to use diverse assays to evaluate oxidative damage as well as translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), and to investigate their mechanisms in DON-induced toxicities on a placenta and embryo. Pregnant C57BL/6 mice were randomly assigned to three groups with different doses of DON: 0, 1.0, 2.5 mg/(kg·day). In gestation day (GD) 12.5 d and 18.5 d, DON induced an elevated resorption rate of the embryos as well as structural and functional damage of the placenta. In the placenta, altered levels of the antioxidant enzymes malondialdehyde, superoxide dismutase and glutathione indicated remarkable oxidative stress. Furthermore, an elevated level of heme oxygenase-1 (HO-1) and the translocation of Nrf2 from nucleus to cytoplasm indicated Nrf2/HO-1 pathway activation in DON-L group (1.0 mg/(kg·day)). It is noteworthy that the results in this experiment in GD 12.5 d were similar to those in GD 18.5 d. In conclusion, DON-induced placental oxidative damage and Nrf2 translocation were similar in GD 12.5 d and GD 18.5 d. Oxidative stress is one of the most important molecular mechanisms for embryotoxicity induced by DON, and Nrf2 translocation may play a substantial role against it.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 502
Author(s):  
Sergio Davinelli ◽  
Luciano Saso ◽  
Floriana D’Angeli ◽  
Vittorio Calabrese ◽  
Mariano Intrieri ◽  
...  

Astaxanthin (AST) is a dietary xanthophyll predominantly found in marine organisms and seafood. Due to its unique molecular features, AST has an excellent antioxidant activity with a wide range of applications in the nutraceutical and pharmaceutical industries. In the past decade, mounting evidence has suggested a protective role for AST against a wide range of diseases where oxidative stress and inflammation participate in a self-perpetuating cycle. Here, we review the underlying molecular mechanisms by which AST regulates two relevant redox-sensitive transcription factors, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NF-κB). Nrf2 is a cellular sensor of electrophilic stress that coordinates the expression of a battery of defensive genes encoding antioxidant proteins and detoxifying enzymes. Likewise, NF-κB acts as a mediator of cellular stress and induces the expression of various pro-inflammatory genes, including those encoding cytokines, chemokines, and adhesion molecules. The effects of AST on the crosstalk between these transcription factors have also been discussed. Besides this, we summarize the current clinical studies elucidating how AST may alleviate the etiopathogenesis of oxidative stress and inflammation.


2021 ◽  
Vol 9 (A) ◽  
pp. 716-726
Author(s):  
Rasha Mostafa ◽  
Azza Hassan ◽  
Abeer Salama

BACKGROUND: Monosodium glutamate (MSG) is commonly used in various food industries as a flavor enhancer. MSG is reported to cause increased neurotoxicity. AIM: The study investigates the molecular mechanisms underlying the neuroprotective effect of thymol against MSG-induced neurotoxic cerebral and hippocampal injury in rats. MATERIALS AND METHODS: Forty rats were allocated to four Groups: I (Normal); II MSG-control (2 g/kg; i.p.); III-IV MSG + Thymol (400 and 800 mg/kg/day; p.o.). All groups were treated for 15 days. RESULTS: MSG-control group showed a significant reduction in behavioral activity, elevated brain tissue oxidative stress, inflammatory parameters, Nuclear Erythroid 2-Related Factor 2 (Nrf2) gene upregulation, overexpression of nuclear factor-kappa β _(NF-kβ), glial fibrillary acidic protein (GFAP) along with neuronal damage in the cerebral cortex, and hippocampus. Thymol ameliorated MSG-induced brain injury through overexpression of Nrf2 gene, thus increasing the cellular defense and resulting in organized anti-oxidant and anti-inflammatory effects. Thymol improved behavioral activity and brain tissue glutathione content. Thymol also decreased brain contents of malondialdehyde, nitric oxide, tumor necrosis factor-alpha, and interleukin-6. Moreover, Thymol improved NF-kβ _and GFAP immunohistochemical expression besides histopathological picture in cerebral cortex and hippocampus as compared to MSG control rats. CONCLUSION: These results suggest that thymol exhibits promising neuroprotective effects. The study elucidates the molecular mechanisms linking Nrf2 pathway signaling to oxidative stress, inflammation and NF-kβ _expression underlying thymol’s protection against MSG-induced neurotoxicity. The study also highlights the role of GFAP expression in MSG-induced astrocyte injury of cerebrum and hippocampus of rats and the promising protective effects of thymol in ameliorating astrocyte injury.


2012 ◽  
Vol 124 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Ramón Rodrigo ◽  
Juan C. Prieto ◽  
Rodrigo Castillo

The role of oxidative stress in ischaemic heart disease has been thoroughly investigated in humans. Increased levels of ROS (reactive oxygen species) and RNS (reactive nitrogen species) have been demonstrated during ischaemia and post-ischaemic reperfusion in humans. Depending on their concentrations, these reactive species can act either as benevolent molecules that promote cell survival (at low-to-moderate concentrations) or can induce irreversible cellular damage and death (at high concentrations). Although high ROS levels can induce NF-κB (nuclear factor κB) activation, inflammation, apoptosis or necrosis, low-to-moderate levels can enhance the antioxidant response, via Nrf2 (nuclear factor-erythroid 2-related factor 2) activation. However, a clear definition of these concentration thresholds remains to be established. Although a number of experimental studies have demonstrated that oxidative stress plays a major role in heart ischaemia/reperfusion pathophysiology, controlled clinical trials have failed to prove the efficacy of antioxidants in acute or long-term treatments of ischaemic heart disease. Oral doses of vitamin C are not sufficient to promote ROS scavenging and only down-regulate their production via NADPH oxidase, a biological effect shared by vitamin E to abrogate oxidative stress. However, infusion of vitamin C at doses high enough to achieve plasma levels of 10 mmol/l should prevent superoxide production and the pathophysiological cascade of deleterious heart effects. In turn, n−3 PUFA (polyunsaturated fatty acid) exposure leads to enhanced activity of antioxidant enzymes. In the present review, we present evidence to support the molecular basis for a novel pharmacological strategy using these antioxidant vitamins plus n−3 PUFAs for cardioprotection in clinical settings, such as post-operative atrial fibrillation, percutaneous coronary intervention following acute myocardial infarction and other events that are associated with ischaemia/reperfusion.


2020 ◽  
Author(s):  
Golbarg Rahimi ◽  
Salime Heydari ◽  
Bahare Rahimi ◽  
Navid Abedpoor ◽  
Iman Nicktab ◽  
...  

Abstract Background: SPTC is a mix of four herbal components (Salvia officinalis, Panax ginseng, Trigonella foenum-graeceum, and Cinnamomum zeylanicum) which might be prevented the development of AGE rich diet-induced diabetic complication and liver injury through activated the nuclear factor erythroid-2-related-factor-2 (Nrf2) pathway. Nrf2, as a master regulator of antioxidant response elements by activating cytoprotective genes expression, is decreased oxidative stress that associated with hyperglycemia and increases insulin sensitivity. the aim of this study was to assess whether the combination therapy of SPTC along with exercise or metformin moderate oxidative stress related liver injurie with more favorable effects in the treatment of AGE rich diet-induced type 2 diabetic mice. Methods: We induced diabetes in C57BL/6 mice by AGE using a diet supplementation and limitation of physical activity. After 16 weeks of intervention, AGE fed mice were compared to control mice. Diabetic mice were assigned into seven experimental groups (each group; n=5): diabetic mice, diabetic mice treated with SPTC (130 mg/kg), diabetic mice treated with Salvia Officinalis (65 mg/kg), diabetic mice treated with metformin (300 mg/kg), diabetic mice with endurance exercise training, diabetic mice treated with SPTC+metformin (130/300 mg/kg), diabetic mice treated with SPTC+exercise training.Results: SPTC+exercise and SPTC+metformin reduced diabetic complications like gain weight, water and calorie intake, blood glucose, insulin, and GLUT4 content more efficiently than each treatment. These combinations improved oxidative stress hemostasis by activating the Nrf2 signaling pathway and attenuating keap1 protein more significantly.Conclusions: Eventually, combined treatment of SPTC with exercise or metformin as a novel approach had more beneficial effects to prevent the development of diabetes and oxidative stress associated with hyperglycemia.


Sign in / Sign up

Export Citation Format

Share Document