scholarly journals Potential of Chrozophora tinctoria Seed Oil as a Biodiesel Resource

2020 ◽  
Vol 10 (10) ◽  
pp. 3473
Author(s):  
Seyed Salar Hoseini ◽  
Gholamhassan Najafi ◽  
Armin Fattahpour Moazzez ◽  
Saeid Hazrati ◽  
Mohammad Taghi Ebadi ◽  
...  

Biodiesel is a renewable fuel that has been widely used in recent years. There are various resources used as biodiesel feedstocks, including animal fats, waste oils, and vegetable oils. In the present study, Chrozophora tinctoria seed oil is introduced as a new biodiesel feedstock. C. tinctoria is a weed and non-edible plant. So, the primary cost of this resource is very low, and hence it can be considered as a biodiesel source. This plant can also grow in most weather conditions. In the present study, the research team tried to produce biodiesel from C. tinctoria seeds through a transesterification reaction. To intensify the transesterification reaction, an ultrasonic device was used. In order to perform the transesterification reaction, potassium hydroxide was used as a catalyst. Important parameters, such as the reaction temperature, reaction time, molar ratio of methanol, and concentration of the catalyst, were adjusted. Based on the adjusted conditions, a biodiesel yield of 84% was attained. The properties of the C. tinctoria biodiesel was compared with the American Society for Testing and Materials (ASTM) standard. The results show the properties of a biodiesel: the density, kinematic viscosity, pour point, flash point, cloud point, and acid number are 0.868 g/cm3, 3.74 mPa, −7 °C, 169 °C, 4 °C, and 0.43 mg, respectively. The specification properties of C. tinctoria biodiesel can thus pass the requirement of the ASTM standard. So, C. tinctoria seed oil can be used as a suitable fuel source instead of petroleum-derived fuels.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 427 ◽  
Author(s):  
Muhammad Awais ◽  
Sa’ed A Musmar ◽  
Faryal Kabir ◽  
Iram Batool ◽  
Muhammad Asif Rasheed ◽  
...  

Biodiesel is a renewable fuel usually produced from vegetable oils and animal fats. This study investigates the extraction of oil and its conversion into biodiesel by base-catalyzed transesterification. Firstly, the effect of various solvents (methanol, n-hexane, chloroform, di-ethyl ether) on extraction of oil from non-edible crops, such as R. communis and M. azedarach, were examined. It was observed that a higher concentration of oil was obtained from R. communis (43.6%) as compared to M. azedarach (35.6%) by using methanol and n-hexane, respectively. The extracted oils were subjected to NaOH (1%) catalyzed transesterification by analyzing the effect of oil/methanol molar ratio (1:4, 1:6, 1:8 and 1:10) and varying temperature (20, 40, 60 and 80 °C) for 2.5 h of reaction time. M. azedarach yielded 88% and R. communis yielded 93% biodiesel in 1:6 and 1:8 molar concentrations at ambient temperature whereas, 60 °C was selected as an optimum temperature, giving 90% (M. azedarach) and 94% (R. communis) biodiesel. The extracted oil and biodiesel were characterized for various parameters and most of the properties fulfilled the American Society for Testing and Materials (ASTM) standard biodiesel. The further characterization of fatty acids was done by Gas Chromatography/Mass Spectrometer (GC/MS) and oleic acid was found to be dominant in M. azedarach (61.5%) and R. communis contained ricinoleic acid (75.53%). Furthermore, the functional groups were analyzed by Fourier Transform Infrared Spectroscopy. The results suggested that both of the oils are easily available and can be used for commercial biodiesel production at a cost-effective scale.


2018 ◽  
Vol 6 (9) ◽  
pp. 451-457
Author(s):  
F. Sini ◽  
I. M Atadashi

Biodiesel was prepared through alkali-catalysed transesterification of neem seed oil using sodium hydroxide as catalyst and ethanol. This process of was carried out firstly throuch eserification and then via transesterification. The process was carried out by varying stirring speed (350, 450, 550, 650, 750 and 850 rpm.) and keeping other variables constant (temperature of 60oC, catalyst concentration of 1w/w%  and 6:1 oil to ethanol molar ratio). In this research work, a yield of 93w/w% was achieved at the stirring speed of 850 rpm. It was observed that the viscosity (3.73mm2/s at 400C) of neem oil methylester generated was within the limit (2-6mm2/s) specified by the American Society for Testing and Materials Standards. The density of neem biodiesel at ambient temperature (250C) was found to be 0.85g/ml, which is exactly close to the density of diesel (0.83g/ml). The Flash Point of the neem oil biodiesel produced was 153.60C which above the ASTM D6751 minimum standards for biodiesel fuel of 130oC. Furthermore, Neem oil biodiesel has a pour point of -40C and a cloud point of 20C. These values clearly indicate that the use of neem oil methyl esters in colder regions is limited. However, this value is also indicative of the high potential of this fuel as biodiesel particularly in Northern Nigeria where temperature is always above 20oC, a temperature at which the oil is fluid.


2013 ◽  
Vol 2 (3) ◽  
pp. 169-173 ◽  
Author(s):  
N.A. Handayani ◽  
H. Santosa ◽  
M. Sofyan ◽  
I. Tanjung ◽  
A. Chyntia ◽  
...  

Nowadays, energy that used to serve all the needs of community, mainly generated from fossil (conventional energy). Terrace in energy consumption is not balanced with adequate fossil fuel reserves and will be totally depleted in the near future. Indonesian Government through a Presidential Decree No. 5 year 2006 mandates an increased capacity in renewable energy production from 5 percent to 15 percent in 2025. C. pentandra seed oil has feasibility as a sustainable biodiesel feedstock in Indonesia. The aim of this paper was to investigate biodiesel production from ceiba petandra seed oil using naturally potassium hydroxide catalyst. Research designs are based on factorial design with 2 levels and 3 independent variables (temperature, reaction time and molar ratio of methanol to oil). According to data calculation, the most influential single variable is molar ratio of methanol to oil. Characterization of biodiesel products meet all the qualifications standardized by SNI 04-7182-2006. Keywords: biodiesel, kapok seed oil, c. pentandra, green technology


REAKTOR ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 27 ◽  
Author(s):  
Andi Suryanto ◽  
Zakir Sabara, HW ◽  
Andi Artiningsih ◽  
Hardi Ismail

Biodiesel is a renewable, non-toxic, environmentally friendly fuel made from vegetable oils through a transesterification reaction with methanol. During this time the manufacture of biodiesel takes a long time, which can be overcome with microwave heating. The use of microwave can decrease the reaction time and the amount of catalyst. The purpose of this study was to study the utilization of microwave as a heater in the transesterification reaction of cotton seed oil with the addition of NaOH catalyst 0.25, 0.5, 0.75 and 1% (w/w) with 100 watts microwave power and a reaction time of 15 minutes. Conversion of biodiesel from cotton seed oil with the NaOH catalyst concentrations 0.5% (w/w), 5 minutes, molar ratio of 1: 12 with a microwave power of 400 watts was 99.11%. The results of the analysis of several parameters on biodiesel products show that they have met the specifications based on Indonesian National Standard (SNI-04-7182-2006). Keyword: biodiesel, transesterification, cotton seed oil, microwave.


2021 ◽  
Vol 13 (1) ◽  
pp. 287-294
Author(s):  
Rakshit Pathak ◽  
Kritika Guleria ◽  
Anjali Kumari ◽  
Satya Pal Singh Mehta

According to India's National Biofuel Policy, only non-edible oilseed crops can be used for the biofuel feedstock. In this context, Camelina sativa is one such plant that fulfils all the criteria defined by the Biofuel policies of India. So, the present investigation was aimed to examine C. sativa seed oil capabilities as a biodiesel feedstock. Oil was deacidified via adsorption method applying Silica Gel as an adsorbent. The highest efficacy was obtained when 1:9 (Silica gel: oil) ratio was applied and the acid value was reduced from 6.45 to 2.78 mg KOH/g. Furthermore, oil was transesterified using methanol in the ratio of 1:6 (oil: methanol molar ratio) and 0.8 % (w/w of oil) of KOH as a catalyst at 70 ?C. The produced biodiesel was analyzed in terms of fuel-specific parameters and results were compared with American Society for Testing and Materials (ASTM) standards. The results were very much satisfactory and under the limits specified by the ASTM standards. The results revealed that oil to biodiesel conversion was 92.28 % with an acid value of 0.37 mg KOH/g. The measured Iodine value was 152 gI2/100g indicated the high unsaturation. Still, Camelina biodiesel showed oxidation stability of 6 h., which was a decent value compared to this much unsaturation. The sulphur content was also higher (24 ppm) than the specified limit (15 ppm). Besides, the fuel-specific parameters like sulphur content and iodine value were under the ASTM limits.


2020 ◽  
Vol 15 (1) ◽  
pp. 77
Author(s):  
Harun Al Rasyid ◽  
Rahmad Nasir

Study on the kinetics of the transesterification reaction of ketapang seeds oil (Terminalia catappa l) of methyl ester production processusing sokletation extraction have been carried out. The ketapang seeds oil had been dissolved and then the several gram of sample were solektated using petroleum benzene solvent. Extraction followed by distillation to obtain pure ketapang oil.The catalyst used in the manufacture of biodiesel is the KOH with catalyst concentration 0.5% b/b KOH / ketapang seed oil.The solvent used was methanol with molar ratio of ketapang seed oil was 6:1.The kinetics of the transesterification reaction studied by taking 50 ml samples of the three-neck flask with a time interval (10, 20, 30, 40, 50 and 60 min) at a temperature of 30 ° C and a stirring speed of 2140 rpm.Sample is poured in the bottles that had been poured of 50 ml of water and allowed to stand in a refrigerator at a temperature of 20° C for 24 hours.Methyl esters are then separated from the glycerol and water using a separating funnel and wash using a NaSO4 in order to in the water which still contained the methyl ester.Pure methyl esters then were analyzed by GCMS to determine the content of methyl ester and HNMR to calculate the kinetics transesterification reaction of ketapang seed oil to a temperature of 30 o C.The results showed that the ideal time to process for production of methyl ester for temperature 30o C is 60 min with the kinetics of the reaction on orde 2 that are the highest graphics and the equation transesterification reaction rate ketapang seed oil into methyl ester is 


Author(s):  
Shilpa K. Jigajinni Bharati S. Meti

Biodiesel a fatty acid alkyl esteris one of the promising biofuel and a clean energy source as an alternative to petroleum-based diesel fuels. The Enzymatic transesterification reaction is influenced by many factors such as amount of biocatalyst, molar ratio of oil to alcohol, temperature, pH, rpm, time etc. Effective variables for transesterification may vary based on the type of feedstock and catalyst used, therefore it is essential to optimise the process suitable for each type of feedstock to achieve higher yield of biodiesel. The statistically-based Plackett-Burman experimental design was adopted in this study to identify effective factors for transesterification reaction of Pongamiapinnata seed oil using immobilized lipase. The factors used in the present study for Plackett-Burman design are molar ratio, amount of immobilized lipase, temperature, time, pH, agitation and water content. The result showed that among seven variables, pH (p-value0.003), agitation speed(p-value 0.024) and amount of immobilized lipase(p-value 0.041) having p<0.05 are statistically significant, positively affecting the transesterification process of Pongamia seed oil. Further the variables which had significant effect on transesterification process will be selected for Response Surface Methodology studies to enhance the yield of biodiesel will be the future scope of work.


Author(s):  
Donald Raoul Tchuifon Tchuifon ◽  
Serges Bruno Lemoupi Ngomade ◽  
George Nche Ndifor-Angwafor ◽  
Paul Alain Nanssou Kouteu ◽  
Tchoumboue Nsah-Ko ◽  
...  

Waste cooking oils are an agro-food waste with adverse effects on the health of living organisms and the environment. The main objective of this work is to valorize waste cooking oil for the synthesis and physicochemical characterization of biodiesel. The method used is based on the transesterification reaction of the oils using methanol and a basic homogeneous catalyst. In this study we employ waste from refined palm oil used for frying doughnuts. After optimization a reaction time of 2 hours, KOH catalyst, and a molar ratio of 9:1 were selected to obtain a good quality biodiesel. Physicochemical characterization was performed on the biodiesel to obtain its density, viscosity, calorific value, acid number, saponification index and IR spectral features. The analysis shows that the biodiesel obtained after transesterification has physicochemical characteristics similar to those of diesel and is consistent with American standards.


2019 ◽  
Vol 8 (2) ◽  
pp. 156-166
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Muhammad Hafizt Akbar ◽  
Dwi Widjanarko

The rapid growth of the population and economy has boosted up the necessity of fuel and  energy source. Until now, the world’s dependency on fossil fuel as the primary energy supply is still high. On the other hand, it has been known that the fossil-based oil and gas reserves are shrunk. Hence, it is urgent to develop alternative energy sources, which are renewable and environmentally friendly, to anticipate the energy insufficiency. Biodiesel is among the prospective renewable energy due to its advantages. Biodiesel (fatty acid methyl esters) is a type of biofuel which is derived from vegetable oil or animal fat. There are various vegetable oils that can be used as raw material for biodiesel production. However, non-edible oils are usually preferred to be selected as a biodiesel feedstock to evade the conflict between food and energy needs. Kapok Randu (Ceiba pentandra) seed oil is a type of non-edible oil which is cheap and can be employed as biodiesel feedstock. However, this oil has high free fatty acid (FFA) content (8.89%). Thus, it cannot directly undergo transesterification reaction to produce biodiesel since the FFA will react with alkaline catalyst to produce soap. The FFA content in Kapok Randu seed oil needs to be decreased until it is lower than 2%. Hence, prior to transesterification reaction, esterification of Kapok Randu seed oil with methanol in the presence of acid catalyst should be conducted to decrease the FFA content. In this work, esterification reaction was performed in the presence of sulfuric acid catalyst. The reactions were conducted at the molar ratio of oil to methanol of 1:12 at the temperature of 40, 50, and 60 ℃ for 120 minutes. The optimum reaction conversion was 95.14%, achieved at the reaction temperature of 60 ℃. Kinetics study using homogeneous models was also performed. It was revealed that the reaction was appropriate with the irreversible second order reaction model. The reaction rate constant (k), activation energy (Ea), and  frequency factor (A) were 4.95 L / mole.min, 30,799.21 J/ mole and 338.744 / min, respectively.


Sign in / Sign up

Export Citation Format

Share Document