scholarly journals Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine

2020 ◽  
Vol 10 (15) ◽  
pp. 5194 ◽  
Author(s):  
Marco Carofiglio ◽  
Sugata Barui ◽  
Valentina Cauda ◽  
Marco Laurenti

Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.

Author(s):  
Elsayim Rasha ◽  
Manal M. Alkhulaifi ◽  
Monerah AlOthman ◽  
Ibrahim Khalid ◽  
Elnagar Doaa ◽  
...  

Currently, the mortality rate in Saudi Arabia’s ICUs is increasing due to the spread of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. This study was carried out to evaluate the ability of biologically synthesized zinc oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome carbapenem-resistant K. pneumoniae (KPC) in vitro and in vivo. ZnO-NPs were synthesized via a biological method and characterized using UV–Vis spectroscopy, Zetasizer and zeta potential analyses, x-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by a macro-dilution method. The morphological alteration of KPC cells after ZnO-NPs treatment was observed by SEM. The in vivo susceptibility of KPC cells to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape, and size of the synthesized nanoparticles. The MIC and MBC were 0.7 and 1.8 mg/ml, respectively. The in vivo results displayed reduced inflammation and wound re-epithelialization of KPC-infected rats. These findings demonstrated that ZnO-NPs have great potential to be developed as antibacterial agents.


2019 ◽  
Vol 2 (1) ◽  
pp. 42-52
Author(s):  
Abdur Rehman ◽  
Saira Ahmad ◽  
Abdul Mateen ◽  
Huma Qamar ◽  
Mudaber Ahmad Mubashar ◽  
...  

Nanotechnology is the science, engineering and technology conducted at the scale that ranges between 1-100 nanometers. For the bio-application, evolution of nanotechnology is creating the concern of scientists towards the synthesis of nanoparticles. The nanoparticles have unique characteristics as compare to bulk materials. Zinc oxide (ZnO) is a matchless semiconductor and it has been under investigation due to its wide range of applications in various areas like biomedical, electronics, material science and optics. In the present work synthesis of ZnO nanoparticles was carried out by using simple chemical approach, Sol-gel method for being effective and inexpensive, by employing zinc acetate dehydrate Zn (CH3CO2)2.2H2O as a precursor and sodium hydroxide (NaOH) starch as a constant agent. The structural properties of resultant zinc oxide nanoparticles were investigated by X-ray diffraction (XRD) technique. The XRD data confirmed the hexagonal wurtzite structure of ZnO powder confirmed by JCPDS 36-1451 data. Particles size was calculated by Scherrer formula and calculated size was 30.14 nm. These nanoparticles were investigated for inhibition zone of bacterial strain Escherichia coli, a gram-negative microbe, at various concentrations of ZnO nanoparticles. Zinc oxide nanoparticles were very proficient for inhibition of growth of bacterial strain E. coli. The mechanism of ZnO NPs for antibacterial activity is release of reactive oxygen species which not only hydrolyze cell wall but cell membrane and cellular components as well providing a potential bactericidal effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mei-nian Xu ◽  
Li Li ◽  
Wen Pan ◽  
Huan-xin Zheng ◽  
Meng-lei Wang ◽  
...  

Purpose: Zinc oxide nanoparticles (ZnO-NPs) have exerted antimicrobial properties. However, there is insufficient evaluation regarding the in vivo antifungal activity of ZnO-NPs. This study aimed to investigate the efficacy and mechanism of ZnO-NPs in controlling Candida albicans in the invertebrate Galleria mellonella.Methods:Galleria mellonella larvae were injected with different doses of ZnO-NPs to determine their in vivo toxicity. Non-toxic doses of ZnO-NPs were chosen for prophylactic injection in G. mellonella followed by C. albicans infection. Then the direct in vitro antifungal effect of ZnO-NPs against C. albicans was evaluated. In addition, the mode of action of ZnO-NPs was assessed in larvae through different assays: quantification of hemocyte density, morphology observation of hemocytes, characterization of hemocyte aggregation and phagocytosis, and measurement of hemolymph phenoloxidase (PO) activity.Results: Zinc oxide nanoparticles were non-toxic to the larvae at relatively low concentrations (≤20 mg/kg). ZnO-NP pretreatment significantly prolonged the survival of C. albicans-infected larvae and decreased the fungal dissemination and burden in the C. albicans-infected larvae. This observation was more related to the activation of host defense rather than their fungicidal capacities. Specifically, ZnO-NP treatment increased hemocyte density, promoted hemocyte aggregation, enhanced hemocyte phagocytosis, and activated PO activity in larvae.Conclusion: Prophylactic treatment with lower concentrations of ZnO-NPs protects G. mellonella from C. albicans infection. The innate immune response primed by ZnO-NPs may be part of the reason for the protective effects. This study provides new evidence of the capacity of ZnO-NPs in enhancing host immunity and predicts that ZnO-NPs will be attractive for further anti-infection applications.


2021 ◽  
Author(s):  
Mostafa elansary ◽  
Ragaa Hamouda ◽  
Maha Elshamy

Abstract We appraised the use of zinc oxide nanoparticles, (ZnO-NPs) and zinc oxide bulk (ZnO-bulk) or zinc acetate, as a natural nematocide, alone or in combination with oxamyl in vitro and in vivo trials in order to improve systems for root-knot nematode (RKNs) control in banana plants. Especially, ZnO-NPs were biosynthesized from the alga, Ulva fasciata. In general, all applications of ZnO-NPs were more effective to control RKNs than ZnO-bulk as well oxamyl alone (chemical control). In in vitro conditions, ZnO-NPs with oxamyl showed 98.91% second stage juveniles2 (J2s) mortality of Meloidogyne incognita after 72 hrs, while 72.86% mortality was observed at the same NPs treatment without oxamyl at the same exposure time. The same treatment was the most effective in diminution of J2s community (82.77%) in soil and galls number (81.87%) in roots under in vivo conditions. In contrast, the highest weight and height of the shoot was observed in Zn-bulk treatment in combination with oxamyl as well oxamyl only (nematocides check). Scanning electron microscopy (SEM) reports displayed the distributions and accumulations of ZnO-NPs on the nematode (J2s) body under direct exposure, which might be the reason of NP-mediated toxicity and disruption for M. incognita.


Author(s):  
Aliaa M. Radwan ◽  
Eman F. Aboelfetoh ◽  
Tetsunari Kimura ◽  
Tarek M. Mohamed ◽  
Mai M. El-Keiy

Background: Zinc oxide nanoparticles (ZnO NPs) are one of the metal oxide nanoparticles, which have attracted the interest of the researchers due to their biocompatibility, easily surface functionalization, and cancer targeting. Objective: This study was designated to investigate the potential antitumor activity of the biologically synthesized ZnO NPs alone or in combination with doxorubicin using Ehrlich ascites carcinoma (EAC) model. Methods: In this study, ZnO NPs were prepared by green approach using fenugreek seeds extract as reducing and capping agent then characterized by scanning electron microscope (SEM), energy dispersive x-ray (EDX), X-ray diffraction (XRD), UV-V spectroscopy, and transmission electron microscope (TEM). The prepared nanoparticles were tested for in vitro and in vivo studies using different parameters. Results: Zinc oxide nanoparticles were determined to have cytotoxicity against different cancer cell lines with lower toxicity against normal one. Moreover, the in vivo study, demonstrated that the intraperitoneal injection of ZnO NPs alone or combined with doxorubicin in EAC mice inhibited the proliferation and growth of EAC by decreasing the ascetic volume and viable tumor cell count. This anti-proliferative efficiency of ZnO NPs was due to cell cycle arrest at G0/G1 phase and induction of apoptosis via upregulating the expression of caspase-3 and Bax and downregulating the expression of Bcl-2. Conclusion: Our findings indicated that the biologically synthesized ZnO NPs may be a promising nanomedicine therapy for cancer treatment in the future.


2021 ◽  
Author(s):  
Elsayim Rasha ◽  
Alkhulaifi Manal ◽  
AlOthman Monerah ◽  
Ibrahim Khalid ◽  
Elnagar Doaa ◽  
...  

Abstract Currently, the mortality rate is increasing in Saudi Arabia's ICU, due to the spread of KPC. This project was carried out to evaluate the ability of the biological synthesized of zinc Oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome Carbapenem-Resistant Klebsiella pneumonia (KPC) in vitro and in vivo. ZnO-NPs was synthesized via a biological method and characterized using UV-Vis spectroscopy, Zeta sizer and Zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method, MIC and MBC was determined by macro dilution method. The morphological alteration of KPC cell after ZnO-NPs treatment was showed by SEM. In vivo susceptibility of KPC to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape and size of the synthesized nanoparticles. The MIC and MBC results was found in 0.7mg\ml and 1.8mg\ml respectively. in vivo results displayed the inflammation reduction and wound healing re-epithelialisation of kpc infected rats. these findings demonstrated that ZnO-NPs has great potential to be developed as antibacterial agents and wound healing.


2021 ◽  
Author(s):  
Sameh Shaaban ◽  
Ahmed M. Fayez ◽  
Mahmoud Abdelaziz ◽  
Doaa Abou El-ezz

Abstract Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the lining of the synovial joints and approximately affects 0.5-1% of the total population imposing a socioeconomic burden. Currently, there is no cure for RA, but receiving proper medical care at early stages of the disease is of high importance, to prevent the progressive disability and premature death. Using rat animal model injected with Complete Freund’s adjuvant proved to be successful in induction of a state highly resembling RA in human. Zinc oxide nanoparticles (ZnO NPs) are considered as one of the most important metal oxide nanoparticles due to their exclusive properties, and they are currently merged in several biological applications due to their biocompatibility, low cost, and high safety profile. In this study, we demonstrated the novel possible beneficial effects of using zinc oxide nanoparticles, on such devastating severe disease. Zinc oxide nanoparticles (ZnO NPs) proved to reduce the adjuvant-induced increased productions of IL-1β, TNF-α, IL-10, total leukocyte count, rheumatoid factor, anti-CCP levels in rats, suggesting an interesting option to be available either alone or in combinations to better control RA.In conclusion we recommend the expansion of more in vivo studies to highlight the benefits which could be obtained of nanoparticles either alone or in combination with the known anti-arthritic and/or anti-inflammatory agents; giving rise to new protocols to maximize the control of RA.


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Sign in / Sign up

Export Citation Format

Share Document