scholarly journals Molding Wetting by Laser-Induced Nanostructures

2020 ◽  
Vol 10 (17) ◽  
pp. 6008
Author(s):  
Aleksander G. Kovačević ◽  
Suzana Petrović ◽  
Alexandros Mimidis ◽  
Emmanuel Stratakis ◽  
Dejan Pantelić ◽  
...  

The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


2011 ◽  
Vol 306-307 ◽  
pp. 25-30 ◽  
Author(s):  
Ping Luo ◽  
Zhan Yun Huang ◽  
Di Hu Chen

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.


2021 ◽  
Author(s):  
Susanne K Woche ◽  
Stefan Dultz ◽  
Robert Mikutta ◽  
Klaus Kaiser ◽  
Georg Guggenberger

<p>Formation of soil microaggregates (SMA) is a surface-driven process and depends on mineral cementing and organic gluing agents. Yet, the role of plants in soil microaggregation by input of fresh organic matter remains little understood. In a mesocosm experiment silty Luvisol topsoil (<250 µm; original soil material) was incubated in absence (bare soil) and presence of plants (Festuca) and water-stable free and occluded SMA were isolated after 4, 12, and 30 weeks and investigated for the surface chemical composition by X-ray photoelectron spectroscopy (XPS) and for wetting properties by contact angle determination.</p><p>Compared to the original soil, the surfaces of both free and occluded SMA tended to smaller O and larger C contents, thus a smaller O/C ratio, along with a slight increase in initial contact angle from about 10° (original soil) to about 20° (SMA). The O/C ratio decreased slightly further from 4 to 12 weeks, especially for bare soil without plants. Slightly greater C contents were detected for occluded than for free SMA, probably hinting at higher retention of organic matter on surfaces of microaggregates entrained in larger soil structures. For bare soil, a slightly greater N content was observed for free SMA while in the presence of Festuca free and occluded SMA had same N contents.</p><p>Regardless of the presence of Festuca, C speciation indicated a lower proportion (in % of total C) of C=O/O-C-O and a higher proportion of C - C/C -  H species for occluded than for free SMA, probably indicating less altered organic matter at the surfaces of occluded SMA. While the proportion of C=O/O-C-O species slightly decreased, that of C- C/C-H species slightly increased towards the end of the incubation. This may hint at some preferences in microbial respiration with respect to C compounds and formation of microbial metabolites. From N speciation a higher ratio between protonated and non-protonated organic N species (N<sub>p</sub>/N<sub>np</sub>) was indicated for Festuca than for bare soil after 4 and for 30 weeks of incubation, i.e., the presence of plants seems to impact N compounds present. The N<sub>p</sub>/N<sub>np </sub>ratio tended to decrease after 30 weeks compared to 4 weeks for both treatments, hinting on changes in N species present.</p><p>In summary, aside some effect on N species present, results indicate rather incubation and SMA origin (free, occluded) than the presence of plants (Festuca) to impact surface chemical composition of the tested SMA. This suggests no defined contribution of plants and their products to formation of 250-53 µm-sized SMA.</p>


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 40-49
Author(s):  
Cuiyu Li ◽  
Yameng Shi ◽  
Rui Zhang ◽  
Gaopan Wang ◽  
Jingyan Jia

AbstractIn this study, ultrahigh-molecular-weight polyethylene (UHMWPE) fibres, modified by acetic acid, sulfuric acid and water at a ratio of 20:25:2 for different time periods and modified UHMWPE/EP composites were prepared. The micromorphology, chemical composition, contact angle, H sample extraction, tensile properties and bending performance of the composite material of the UHMWPE fibres before and after modification were tested and analysed. The results show that, after the UHMWPE fibres were treated with the modified liquid, the surface roughness of the fibre increased, the contact angle decreased, and the surface chemical composition and species significantly changed; the mechanical properties of the composites are best when the fibres were treated for 9 min. For the same fibre content, the specific strength, specific modulus and bending load of UHMWPE composites treated for 9 min were increased by 16.7%, 82.9% and 55.3%, respectively, compared with untreated samples.


2019 ◽  
Vol 9 (17) ◽  
pp. 3445 ◽  
Author(s):  
Anna Zdziennicka ◽  
Katarzyna Szymczyk ◽  
Bronisław Jańczuk ◽  
Rafał Longwic ◽  
Przemysław Sander

Oleic, linoleic, and linolenic acids are the main components of canola oil and their physiochemical properties decide on the use of canola oil as fuel for diesel engines. Therefore, the measurements of the surface tension of oleic, linoleic, and linolenic acids being the components of the canola oil, as well as their contact angles on the polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA), and engine valve, were made. Additionally, the surface tension and contact angle on PTFE, PMMA, and the engine valve of the oleic acid and n-hexane mixtures were measured. On the basis of the obtained results, the components and parameters of oleic, linoleic, and linolenic acids’ surface tension were determined and compared to those of the canola oil. Next, applying the components and parameters of these acids, their adhesion work to PTFE, PMMA, and the engine valve was calculated by means of various methods.


2007 ◽  
Vol 1008 ◽  
Author(s):  
Sushant Gupta ◽  
Arul Arjunan Chakkaravarthi ◽  
Rajiv Singh ◽  
Nate Stevens ◽  
Jeff Opalko ◽  
...  

AbstractA novel technique was developed to create superhydrophobic polytetrafluoroethylene (PTFE) surface using nanosecond pulse electron deposition (PED) technique. The PTFE or Teflon thin films deposited on silicon substrate showed superhydrophobicity evidenced by the contact angle of 166±2 degrees. The SEM micrographs reveal the clustered growth of the deposited film and two level sub-micron asperities which is corroborated by the AFM. FTIR and contact angle studies were conducted to study the chemical nature and the wetting properties of the films.


2007 ◽  
Vol 345-346 ◽  
pp. 1269-1272 ◽  
Author(s):  
Eszter Bognár ◽  
György Ring ◽  
Hilda Zsanett Marton ◽  
János Dobránszky ◽  
János Ginsztler

Stents are special metallic or polymer endoprostheses of meshed structure and tube shape. Their function is to prevent restenosis in the arteries. Stents can be coated or uncoated. In the expanded part of the artery the chance of restenosis is bigger even without a stent so it is practical to coat the stents. The aim of this work is to present the results of the coating experiments made on the coronary stents. Three types of commercially available polyurethanes were used for these experiments. The coatings were produced by a dipping method. Electro-polished and non-electro-polished metallic sheets and stents were used for these experiments. Contact angle measurements were done to examine the wetting properties of the three different polyurethane coatings. The quality and the changing of the coatings were examined by different methods (stereomicroscope, scanning electron microscope and energy dispersive spectrometry).


Sign in / Sign up

Export Citation Format

Share Document