scholarly journals In Vitro Comparison of Bioactive Silicon Nitride Laser Claddings on Different Substrates

2020 ◽  
Vol 10 (24) ◽  
pp. 9039
Author(s):  
Elia Marin ◽  
Matteo Zanocco ◽  
Francesco Boschetto ◽  
Toshiro Yamamoto ◽  
Narisato Kanamura ◽  
...  

The performance, durability, and bio-integration of functional biomedical coatings can be enhanced by changing or improving their substrate properties. In this study, we applied silicon nitride powder-based laser claddings to various substrates and undertook an in vitro assessment of their osteoconductive and antibacterial properties. The substrates included common arthroplasty materials: polyethylene, titanium, zirconia-toughened alumina, and zirconia. Multiple analytical techniques were used to characterize the physical and chemical structure of the claddings after deposition. Partial decomposition of the silicon nitride powders occurred during the cladding process, resulting in nitrogen loss during intermetallic formation phases under some substrate and treatment conditions. The osteoconductive capabilities of various laser-cladded substrates were evaluated in a SaOS-2 osteosarcoma cell culture by measuring the amount of bone formation on the coated surface. Antibacterial testing was performed using Gram-positive Staphylococcus epidermidis at 24 and 48 h of incubation. Silicon nitride coating enhanced both osteoconductive and antibacterial properties.

2020 ◽  
Vol 10 (7) ◽  
pp. 2612 ◽  
Author(s):  
Matteo Zanocco ◽  
Elia Marin ◽  
Francesco Boschetto ◽  
Tetsuya Adachi ◽  
Toshiro Yamamoto ◽  
...  

Functional coatings are commonly applied to biomaterials in order to improve their properties. In this work, polyethylene was coated with a silicon nitride (Si3N4) powder using a pulsed laser source in a nitrogen gas atmosphere. Several analytical techniques were used to characterize the functionalized surface of the polymer, including Raman spectroscopy, laser microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Antibacterial properties were tested in vitro against Staphylococcus epidermidis. The Si3N4 coating sensibly reduced the amount of living bacteria when compared to the uncoated polymer. Osteoconductivity was also tested in vitro using SaOS-2 osteosarcoma cells. The presence of Si3N4 coating resulted in an increased amount of hydroxyapatite. Coating of polyethylene with silicon nitride may lead to improved performance of indwelling orthopaedic or less invasive medical devices.


Friction ◽  
2020 ◽  
Author(s):  
Weijun Li ◽  
Hao Liu ◽  
Yuanyuan Mi ◽  
Miaoran Zhang ◽  
Jinmiao Shi ◽  
...  

AbstractThere is a high demand for hydrogels with multifunctional performance (a combination of adhesive, mechanical, and electrical properties) in biological, tissue engineering, robotics, and smart device applications. However, a majority of existing hydrogels are relatively rigid and brittle, with limited stretchability; this hinders their application in the emerging field of flexible devices. In this study, cheap and abundant potato residues were used with polyacrylamide (PAM) to fabricate a multifunctional hydrogel, and chitosan was used for the design of a three-dimentional (3D) network-structured hydrogel. The as-prepared hydrogels exhibited excellent stretchability, with an extension exceeding 900% and a recovery degree of over 99%. Due to the combination of physical and chemical cross-linking properties and the introduction of dopamine, the designed hydrogel exhibits a remarkable self-healing ability (80% mechanical recovery in 2 h), high tensile strength (0.75 MPa), and ultra-stretchability (900%). The resultant products offer superior properties compared to those of previously reported tough and self-healing hydrogels for wound adhesion. Chitosan and potato residues were used as scaffold materials for the hydrogels with excellent mechanical properties. In addition, in vitro experiments show that these hydrogels feature excellent antibacterial properties, effectively hindering the reproduction of bacteria. Moreover, the ternary hydrogel can act as a strain sensor with high sensitivity and a gauge factor of 1.6. The proposed strategy is expected to serve as a reference for the development of green and recyclable conductive polymers to fabricate hydrogels. The proposed hydrogel can also act as a suitable strain sensor for bio-friendly devices such as smart wearable electronic devices and/or for health monitoring.


2018 ◽  
Vol 24 (16) ◽  
pp. 1821-1826 ◽  
Author(s):  
Sumbla Sheikh ◽  
Alexander Sturzu ◽  
Hubert Kalbacher ◽  
Thomas Nagele ◽  
Christopher Weidenmaier ◽  
...  

Curcumin, as the main ingredient of the curcuma spice, has increasingly become the target of scientific research. The turmeric root where the spice is obtained from has been widely used in the traditional medicine. Moreover, scientific studies have found that curcumin has anti-inflammatory, anti-cancer, anti-angiogenic effects as well as antibacterial properties. Recently, curcumin has gathered interest as a potential therapeutic agent in the research on Alzheimer’s disease. A consistent problem in the investigative and therapeutic applications of curcumin is its poor solubility in aqueous solutions. In the present study, we synthesized a conjugate of curcumin, the amino acid lysine and the fluorescent dye fluorescein. This conjugate was soluble in cell culture medium and facilitated the examination of curcumin with fluorescence imaging methods. We studied the cell growth impact of unmodified curcumin on seven different human cell lines and then analyzed the uptake and cellular localization of our curcumin conjugate with confocal laser scanning imaging and flow cytometry on the seven cell lines. We found that unbound curcumin inhibited cell growth in vitro and was not taken up into the cells. The curcumin conjugate was internalized into the cell cytoplasm in a dot-like pattern and cellular uptake correlated with the cell membrane damage which was measured using propidium iodide. The CAL-72 osteosarcoma cell exhibited 3-4fold increased conjugate uptake and a strong uniform fluorescein staining in addition to the dot-like pattern observed in all cell lines. In conclusion, we successfully synthesized a novel water-soluble fluorescent curcumin conjugate which showed a strong preference for CAL-72 osteosarcoma cells in vitro.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Julia M. Tan ◽  
Palanisamy Arulselvan ◽  
Sharida Fakurazi ◽  
Hairuszah Ithnin ◽  
Mohd Zobir Hussein

The revolutionary development of functionalized carbon nanotubes (f-CNTs) for applications in nanomedicine has emerged as one of the most interesting fields, which has increased exponentially in recent years. This is due to their appealing physical and chemical properties, as well as their unique architecture. After a brief introduction on the physicochemical properties of carbon nanotubes (CNTs), we described several functionalization methods for the surface modification of CNTs, with the aim to facilitate their solubility in physiological aqueous environment. This review focuses on recent advances in drug delivery design based onf-CNTs with an emphasis on the determination of various parameters involved and characterization methods used in order to achieve higher therapeutic efficacy of targeted drug delivery. In particular, we will highlight a variety of different analytical techniques which can be used to characterize the elemental composition, chemical structure, and functional groups introduced onto the CNTs after surface modification. We also review the current progress of availablein vitrobiocompatibility assays based onf-CNTs and then discuss their toxicological profile and biodistribution for advanced drug delivery.


2020 ◽  
Vol 16 ◽  
Author(s):  
Edhem Hasković ◽  
Safija Herenda ◽  
Zehra Halilović ◽  
Snežana Unčanin ◽  
Denis Hasković ◽  
...  

Background: The Spectrophotometric method is one of the most suitable analytical techniques for testing the activity of enzymes under the influence of various factors. Methods: The effect of H1-antihistamines of loratadine and calcium ions on enzyme catalase under in vitro conditions was investigated in this paper. Results and Discussion: It has been shown that loratadine isa partial inhibitor of catalase, but this effect is diminished in the presence of calcium ions. Calcium as well as other cations are important for many biological and cellular functions. The kidneys play a central role in the homeostasis of these ions. The activity of the catalase enzyme under the given conditions, the type of inhibition,and the kinetic parameters of the enzyme reaction were determined. Conclusion: We concluded that loratadine is a partially competitive inhibitor.


2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4731
Author(s):  
Changkun Liu ◽  
Dan Liao ◽  
Fuqing Ma ◽  
Zenan Huang ◽  
Ji’an Liu ◽  
...  

In this study, the surface-initiated atom transfer radical polymerization (SI-ATRP) technique and electroless deposition of silver (Ag) were used to prepare a novel multi-functional cotton (Cotton-Ag), possessing both conductive and antibacterial behaviors. It was found that the optimal electroless deposition time was 20 min for a weight gain of 40.4%. The physical and chemical properties of Cotton-Ag were investigated. It was found that Cotton-Ag was conductive and showed much lower electrical resistance, compared to the pristine cotton. The antibacterial properties of Cotton-Ag were also explored, and high antibacterial activity against both Escherichia coli and Staphylococcus aureus was observed.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3368
Author(s):  
Héloïse Côté ◽  
André Pichette ◽  
Alexis St-Gelais ◽  
Jean Legault

The use of growth-promoting antibiotics in livestock faces increasing scrutiny and opposition due to concerns about the increased occurrence of antibiotic-resistant bacteria. Alternative solutions are being sought, and plants of Lamiaceae may provide an alternative to synthetic antibiotics in animal nutrition. In this study, we extracted essential oil from Monarda didyma, a member of the Lamiaceae family. We examined the chemical composition of the essential oil and then evaluated the antibacterial, antioxidant, and anti-inflammatory activities of M. didyma essential oil and its main compounds in vitro. We then evaluated the effectiveness of M. didyma essential oil in regard to growth performance, feed efficiency, and mortality in both mice and broilers. Carvacrol (49.03%) was the dominant compound in the essential oil extracts. M. didyma essential oil demonstrated antibacterial properties against Escherichia coli (MIC = 87 µg·mL−1), Staphylococcus aureus (MIC = 47 µg·mL−1), and Clostridium perfringens (MIC = 35 µg·mL−1). Supplementing the diet of mice with essential oil at a concentration of 0.1% significantly increased body weight (+5.4%) and feed efficiency (+18.85%). In broilers, M. didyma essential oil significantly improved body weight gain (2.64%). Our results suggest that adding M. didyma essential oil to the diet of broilers offers a potential substitute for antibiotic growth promoters.


Sign in / Sign up

Export Citation Format

Share Document