scholarly journals Leveraging the Advantages of Additive Manufacturing to Produce Advanced Hybrid Composite Structures for Marine Energy Systems

2021 ◽  
Vol 11 (3) ◽  
pp. 1336
Author(s):  
Paul Murdy ◽  
Jack Dolson ◽  
David Miller ◽  
Scott Hughes ◽  
Ryan Beach

Many marine energy systems designers and developers are beginning to implement composite materials into the load-bearing structures of their devices, but traditional mold-making costs for composite prototyping are disproportionately high and lead times can be long. Furthermore, established molding techniques for marine energy structures generally require many manufacturing steps, such as secondary bonding and tooling. This research explores the possibilities of additively manufactured internal composite molds and how they can be used to reduce costs and lead times through novel design features and processes for marine energy composite structures. In this approach, not only can the composite mold be additively manufactured but it can also serve as part of the final load-bearing structure. We developed a conceptual design and implemented it to produce a reduced-scale additive/composite tidal turbine blade section to fully demonstrate the manufacturing possibilities. The manufacturing was successful and identified several critical features that could expedite the tidal turbine blade manufacturing process, such as single-piece construction, an integrated shear web, and embedded root fasteners. The hands-on manufacturing also helped identify key areas for continued research to allow for efficient, durable, and low-cost additive/composite-manufactured structures for future marine energy systems.

Author(s):  
William Baron ◽  
David Zeppettella

Future directed energy systems may offer affordable, sustainable and scalable application of force to support emerging airborne missions with minimal collateral damage. These systems largely depend on the development of capacitors that can be used in pulse forming networks (PFNs) and/or Marx bank configurations for the conversion of available prime electrical energy into the necessary short and very fast pulses of energy needed to energize military device loads. Such loads may be lasers, electromagnetic guns/launchers, high power microwaves, etc. Compact, lightweight, low cost, pulse power capacitor devices are a necessity for airborne applications and space-borne systems. This paper will discuss research aspects of an innovative concept to integrate an energy storage function into load bearing airframe structure, in order to eliminate much of the parasitic weight associated with conventional pulse power systems. Current high energy capacitors can weigh in the thousands of pounds as shown in Figure 1. For an airborne application this can have a significant effect on the size and take off gross weight of the aircraft. If small aircraft will be used in future directed energy systems, significant improvements in weight efficiency are necessary. Structural capacitor implies that the aircraft/spacecraft structure carries load and also provides a means of maintaining capacitive charge for energy storage and power conditioning in a variety of applications, both pulsed and continuous. The specific objective of this effort is to demonstrate feasibility of a plausible design concept, by conducting a series of experimental trials to characterize the structural and electrical efficiency of the concept.


Solar Energy ◽  
2014 ◽  
Vol 108 ◽  
pp. 370-376 ◽  
Author(s):  
Wajiha Shireen ◽  
Adarsh Nagarajan ◽  
Sonal Patel ◽  
Radhakrishna Kotti ◽  
Preetham Goli

2011 ◽  
Vol 186 ◽  
pp. 11-15
Author(s):  
Li Cao ◽  
Wen Chen ◽  
Jun Xiao

Video processing technology is regarded as a low-cost detection technology in complex environment. Because the placement layer is thin and the surface is complex that causes high detection error and high cost in laser measurement. Two problems must be solved before using it in large-scale composite structures automatic placement. One is to obtain the high-quality and stable image, and the other is to improve efficiency of image processing. In this paper, a method obtaining the high quality placement gap images was studied. It made use of the optical characteristics of composite material’s surface texture. And some parameters were determined by experiments. To reduce the calculation cost of image processing, a placement gap measurement method based on line scanning was also proposed here. The method was effective in our detection experiments on an actual workpiece.


Author(s):  
Stéphane Paboeuf ◽  
Laura-Mae Macadré ◽  
Pascal Yen Kai Sun

Tidal turbines are emerging technologies offering great potential for the harnessing of a renewable and predictable oceanic resource. However, exploitation at sea comes with significant design, installation, grid connection, and maintenance operations challenges. Consequently, guidelines and standards are required to ensure safety, quality, performance and accelerate tidal turbines development and commercialisation. Standardisation is also a necessity to support and improve safety and confidence of a wide range of Marine Renewable Energy (MRE) stakeholders such as designers, project operators, investors, insurers or final users. There are undergoing developments on guidelines, standards and certification systems within the International Electrotechnical Commission (IEC) Technical Committee TC 114 “Marine energy - Wave, tidal and other water current converters” and the IEC Renewable Energy “Marine Energy - Operational Management Committee” (IECRE ME – OMC). However, as the tidal energy concepts are only at the demonstration stage, only few guidelines and no dedicated certification scheme has been published so far within this organization, which guarantee an international, independent, non-governmental and consensus-based elaboration process. The aim of this paper is to present a proposal of certification methodology, developed by Bureau Veritas for the design assessment of current and tidal turbines, and its application to a French case study. This certification procedure was developed within the French research project Sabella D10 funded by ADEME and is published in the Bureau Veritas guideline NI603 “Current & Tidal Turbines”. The suggested certification procedure addresses prototype, component, type and project certification. Main objective, scope, intermediary steps to be completed and resulting certificates will be detailed for each certification scheme, as well as their interactions. This methodology will be illustrated by the case study on the Sabella D10 prototype, a French tidal turbine installed in 2015 in the Fromveur Passage, off Ushant Island. Sabella D10 is a 1 MW tidal turbine fully submerged laid on the seabed with a horizontal axis and 6 blades. It is the first French tidal turbine producing electricity and connected to the electrical network. The Sabella D10 case study will focus on prototype certification and computations performed for support structure and blades. The paper will describe the load cases that have been considered, the review procedure for the support structure and the blades design assessment, including description of a streamlined method for basic design and a detailed method for final design. In conclusion, the next steps will be introduced to continue the certification developments of tidal and current turbines.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8460
Author(s):  
Lenaïg G. Hemery ◽  
Andrea E. Copping ◽  
Dorian M. Overhus

Marine energy devices harness power from attributes of ocean water to form a sustainable energy source. Knowledge gaps remain about whether marine energy systems can affect the environment, adding another threat to animal populations and habitats already under pressure from climate change and anthropogenic activities. To date, potential environmental effects have been studied under the scope of stressor–receptor interactions, where moving parts of, or emissions from, a system could harm the animals, habitats, and natural processes. While crucial for understanding effects and identifying knowledge gaps, this approach misses a holistic view of what animals may experience in the presence of marine energy systems. We look at six biological consequences and forces that drive the health of an animal population and the effects expected from marine energy development: success of early life stages; changes in competitive capabilities; growth and survival based on food availability; susceptibility to predators; injury or death; and reproductive success. We use case studies to develop this approach, focusing on a variety of marine animals. An approximate level of risk is assigned for each interaction based on the biological consequences. This work highlights the need to examine the effects of marine energy development on animal populations within their natural habitats.


Author(s):  
B. Gaurier ◽  
Ph. Druault ◽  
M. Ikhennicheu ◽  
G. Germain

In the main tidal energy sites like Alderney Race, turbulence intensity is high and velocity fluctuations may have a significant impact on marine turbines. To understand such phenomena better, a three-bladed turbine model is positioned in the wake of a generic wall-mounted obstacle, representative of in situ bathymetric variation. From two-dimensional Particle Image Velocimetry planes, the time-averaged velocity in the wake of the obstacle is reconstructed in the three-dimensional space. The reconstruction method is based on Proper Orthogonal Decomposition and enables access to a representation of the mean flow field and the associated shear. Then, the effect of the velocity gradient is observed on the turbine blade root force, for four turbine locations in the wake of the obstacle. The blade root force average decreases whereas its standard deviation increases when the distance to the obstacle increases. The angular distribution of this phase-averaged force is shown to be non-homogeneous, with variation of about 20% of its time-average during a turbine rotation cycle. Such force variations due to velocity shear will have significant consequences in terms of blade fatigue. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


2019 ◽  
Vol 304 ◽  
pp. 07003
Author(s):  
Martin Schubert ◽  
Anthanasios Dafnis

In the project multiSat multifunctional composite structures for satellite application have been developed. Functions such as protection against space debris, radiation shielding and passive thermal control have been integrated into the load-bearing composite spacecraft structure by use of suitable materials and components. Sandwich panels have been studied as representative structural parts of a conventional satellite structure. Measures for increased space debris protection include the substitution of the conventional honeycomb core by 3D-printed aluminum cellular structures and the reinforcement of the sandwich panel by integration of high performance fabrics which effectively break up and catch impacting debris particles. This paper describes the development and design of multifunctional sandwich concepts with increased impact protection capability and presents the experimental results of hypervelocity impact testing with different types of CFRP sandwich panels.


Sign in / Sign up

Export Citation Format

Share Document