scholarly journals Analysis of Bulb Turbine Hydrofoil Cavitation

2021 ◽  
Vol 11 (6) ◽  
pp. 2639
Author(s):  
Andrej Podnar ◽  
Marko Hočevar ◽  
Lovrenc Novak ◽  
Matevž Dular

The influence of a bulb runner blade hydrofoil shape on flow characteristics around the blade was studied. Experimental work was performed on a bulb turbine measuring station and a single hydrofoil in a cavitating tunnel. In the cavitation tunnel, flow visualization was performed on the hydrofoil’s suction side. Cavitation structures were observed for several cavitation numbers. Cavitation was less intense on the modified hydrofoil than on the original hydrofoil, delaying the cavitation onset by several tenths in cavitation number. The results of the visualization in the cavitation tunnel show that modifying the existing hydrofoil design parameters played a key role in reducing the cavitation inception and development, as well as the size of the cavitation structures. A regression model was produced for cavitation cloud length. The results of the regression model show that cavitation length is dependent on Reynolds’s number and the cavitation number. The coefficients of determination for both the existing and modified hydrofoils were reasonably high, with R2 values above 0.95. The results of the cavitation length regression model also confirm that the modified hydrofoil exhibits improved the cavitation properties.

Author(s):  
Jianping Yuan ◽  
Yanxia Fu ◽  
Shouqi Yuan

In order to predict cavitation performance of the centrifugal pump, including cavitating structures and vapour volume at the blade suction side, as well as its relationship with the backflow in the impeller eye, a 3D numerical simulation of detailed steady and unsteady cavitating flow was applied to reproduce its inner flow fields at part load conditions (0.5Qd and 0.4Qd). The comparisons of cavitation characteristics of the current centrifugal pump at an on-design point (1.0Qd) and a high flow rate (1.2Qd) were achieved as well. In addition, Frequency analysis of pressure fluctuations at the blade passages and the inlet pipe were also obtained during cavitation for a flow coefficient of 50%. The results further show that successive blade cavitation patterns and the creeping cavitation number dropping appear for a wide range of flow rates when the inlet total pressure decreases from cavitation inception to the breakdown of the centrifugal pump, as is quite different from that when cavitation occurs at 1.0Qd or 1.2Qd. Unbalanced attached cavities on the blade suction side were also observed at 0.5Qd. Meanwhile, the unsteady behaviour of cavities attached to the blade suction side and cavitation number dropping depend on the flow rate and cavitation number. Another significant characteristic of the phenomenon is that all the domain frequencies in blade passages and inlet pipe at part load conditions are 0.048Hz∼48.285Hz, which is typically lower than the shaft rotational frequency of the model centrifugal pump.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Maxime Coulaud ◽  
Jean Lemay ◽  
Claire Deschenes

Abstract Experimental analysis of a bulb turbine during the start-up sequence and in speed-no-load (SNL) operating conditions was performed in a closed-loop circuit. This study focuses on pressure fluctuations across the machine. The turbine was equipped with 26 pressure sensors on one runner blade and 16 in the stationary reference frame. Strain measurements were also performed on two other runner blades. The first section of this analysis focuses on SNL operating conditions using standard Fourier data processing. The results show that three rotating flow phenomena are only present close to the runner. One of them corresponds to the interblade vortex at f/fr=4.00, whereas the two others, which have subsynchronous runner frequencies, are consistent with a possible rotating stall. These phenomena, which exist predominantly on the suction side, have a strong influence on runner blade strain. The second section of the study concentrates on a time-frequency analysis using the Morlet wavelet transform. It reveals that the two subsynchronous flow structures appear at the end of the start-up and exhibit bistable behavior. As well, each of these phenomena acts differently on the blade. These phenomena also interact with the interblade vortex.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Andrej Podnar ◽  
Matevž Dular ◽  
Brane Širok ◽  
Marko Hočevar

In this study, a comparison of two different Kaplan turbine runners with differently shaped turbine blades was performed. The two turbines differed in the selection of the hydrofoil, the main hydrofoil parameters of which had been modified including, the position of maximum thickness and curvature and the inlet edge radius. Both turbines (unmodified and modified hydrofoils) were tested on a rig designed for low pressure model turbine acceptance tests. The effect of blade shape on cavitation inception, development, and intensity was demonstrated using computer aided visualization. Visualization was performed on the suction side of Kaplan runner blade where the shape of the blade determines cavitation inception and development. The modified Kaplan turbine reduced the cavitation phenomena, and as a result, both turbine performance and output increased for the selected operating points. This demonstrates that choosing the right turbine blade shape is key for optimal turbine performance.


2021 ◽  
Vol 152 (A3) ◽  
Author(s):  
Ch Suryanarayana ◽  
M Nageswara Rao ◽  
B Suryanarayana ◽  
K Ramji

A Pumpjet (PJP) was designed for an underwater body (UWB) with an axi-symmetric configuration as part of a technology development program for design and development of pumpjet. Its propulsive and cavitation performances were predicted through CFD study. The propulsor design was evaluated for its propulsion characteristics through model tests conducted in a Wind Tunnel. In the concluding part of the study, evaluation of the cavitation performance of the pumpjet was undertaken in a Cavitation Tunnel (CT). In order to assess the cavitation free operational speeds and depths of the vehicle with respect to pumpjet, cavitation tests of the PJP were carried out in behind condition at CT to determine the cavitation inception numbers for rotor, stator and cowl. The model test results obtained were corrected for full scale Reynolds number and subsequently analyzed for cavitation inception speeds at different operating depths. This entire exercise facilitated the development of an innovative testing technique and a special test setup for finding cavitation performance of pumpjet propulsor. The technique was evaluated by comparative corroboration of inception position and depth obtained from CFD analysis. From the model tests it was also found that the cavitation inception of the rotor takes place on the tip face side at higher advance ratios and cavitation shifts towards the suction side as the shaft rotation rate increases whereas the stator and cowl are free from any cavitation.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Hoseyn Sayyaadi

The collapsing phenomenon of cavitation bubbles generates extremely high local pressures and temperatures that can be utilized for the chemical oxidation process. This process is carried out in cavitation reactors. A Venturi tube is one of the most common forms of hydrodynamic cavitation reactors, which is suitable for industrial scale applications. In this work, the hydraulic performance and efficiency in chemical reaction of a new form of hydrodynamic cavitation reactors, which is called “tandem Venturi,” were studied and compared with the conventional type of the single Venturi. The tandem Venturi is used for enhancement of the chemical reaction of hydrodynamic cavitating flow. The reaction enhancement is useful especially for the reaction of aqueous solutions not containing volatile organic compounds (VOCs). The operating pressure, inlet pressure, flow rate, and consequently the cavitation number were controlled and systematically varied for both single and tandem Venturis. Moreover, a specified amount of H2O2 was injected into the flow as required. The effects of operating pressure and the cavitation number on cavitating flow characteristics for single and tandem Venturis were experimentally observed and the results were compared. In addition, the performance of the tandem-Venturi reactor for degradation of non-VOC contaminants (2-chlorophenol) was studied. Its performance was compared with the performance of a conventional Venturi reactor. Two different categories were conducted for the experiments. In the first category, the effect of the net cavitating flow on degradation of non-VOC for the single and tandem Venturis was compared. In the second category, the effect of H2O2 injection into the cavitating flow on degradation of non-VOC (“cavitation-oxidation” process) was studied. The performance of the single and tandem Venturis for the cavitation-oxidation process was compared. Further investigation was performed to assess the advantage of utilizing the tandem Venturi from the viewpoint of efficiency of the oxidation process. The results of the energy efficiency were compared with the corresponding efficiency of the single Venturi. Finally, the relationship between the main parameters of cavitation reaction flow with the chemical performance was discussed.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Kengo Kikuta ◽  
Noriyuki Shimiya ◽  
Tomoyuki Hashimoto ◽  
Mitsuru Shimagaki ◽  
Hideaki Nanri ◽  
...  

Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.


2008 ◽  
Vol 130 (10) ◽  
Author(s):  
Michèle Guingand ◽  
Didier Remond ◽  
Jean-Pierre de Vaujany

This paper deals with face gear design. The goal is to propose a simple formula for predicting the width of the wheel as a function of the main design parameters. A specific software was used to achieve this goal. This numerical tool is able to simulate the geometry and the quasistatic loaded behavior of a face gear. The statistical method used for analyzing the influence of data is described: The design of experiments leads to a simple regression model taking into account the influential parameters and their couplings. In the last part of this paper, the results of the formulas are compared to those of the software and an optimal design is proposed based on the regression model.


2012 ◽  
Vol 212-213 ◽  
pp. 1057-1061 ◽  
Author(s):  
Zhong Liu ◽  
Zhu Qing Huang ◽  
Shu Yun Zou ◽  
Hong De Rao

The 3# bulb turbine in Hongjiang Hydropower Plant has faced the problem of output deficiency since its commission in Sept. 2003, which caused a large economic loss. Following simple theoretical analyses on the main factors affecting the turbine’s output and efficiency, the field test schemes were determined to measure the shapes and intervals of guide vanes and runner blades of the 3#, 5# and 6# turbines. The test results discover that the average blade intervals of the 3# turbine are generally less than those of the 5# one. Suggestions on runner blade installation adjustment and combined curve modification are given.


Author(s):  
Lingyu Li ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
Zihao Mi

The head of low-head hydropower stations is generally higher than 2.5m in the world, while micro-head hydropower resources which head is less than 2.5m are also very rich. In the paper, three-dimensional CFD method has been used to simulate flow passage of the micro-head bulb turbine. The design head and unit flow of the turbine was 1m and 3m3/s respectively. With the numerical simulation, the bulb turbine is researched by analyzing external characteristics of the bulb turbine, flow distribution before the runner, pressure distribution of the runner blade surface, and flow distribution of the outlet conduit under three different schemes. The turbine in second scheme was test by manufactured into a physical model. According to the results of numerical simulation and model test, bulb turbine with no guide vane in second scheme has simpler structure, lower cost, and better flow capacity than first scheme, which has traditional multi-guide vanes. Meanwhile, efficiency of second scheme has just little decrease. The results of three dimensions CFD simulation and test results agree well in second scheme, and higher efficiency is up to 77% which has a wider area with the head of 1m. The curved supports in third scheme are combined guide vanes to the fixed supports based on 2nd scheme. By the water circulations flowing along the curved supports which improve energy transformation ability of the runner, the efficiency of the turbine in third scheme is up to 82.6%. Third scheme, which has simpler structure and best performance, is appropriate for the development and utilization of micro-head hydropower resources in plains and oceans.


Sign in / Sign up

Export Citation Format

Share Document