scholarly journals Influence of Maxwell Stiffness in Damage Control and Analysis of Structures with Added Viscous Dampers

2021 ◽  
Vol 11 (7) ◽  
pp. 3089
Author(s):  
Jorge Conde ◽  
Alejandro Bernabeu

Viscous damping systems are often implemented in structures to reduce seismic damage. The stiffness of these elements is dominated by the most flexible part of the set including brace extender, auxiliary mounting elements and damping unit. Existing experimental data are used in this study to show that the actual stiffness of the set is about 25% to 50% of the value generally adopted in current engineering practice, which is based solely on the brace extender. A numerical study shows that this reduction has large implications for several variables related to damage control: residual drift ratio, storey acceleration and plastic strain energy dissipated by the frame members. Other variables, such as member forces and rotations, can experience large variations, particularly for non-linear dampers and high damping levels, especially in the top part of the building and more conspicuously for moderate earthquake intensities. In the absence of accurate data, Maxwell stiffness for analysis based on brace extender properties should be substantially reduced, with recommended factors between 0.25 and 0.50. Given the scarcity of experimental data, these results should be considered preliminary.

1996 ◽  
Vol 118 (3) ◽  
pp. 592-597 ◽  
Author(s):  
T. S. Zhao ◽  
P. Cheng

An experimental and numerical study has been carried out for laminar forced convection in a long pipe heated by uniform heat flux and subjected to a reciprocating flow of air. Transient fluid temperature variations in the two mixing chambers connected to both ends of the heated section were measured. These measurements were used as the thermal boundary conditions for the numerical simulation of the hydrodynamically and thermally developing reciprocating flow in the heated pipe. The coupled governing equations for time-dependent convective heat transfer in the fluid flow and conduction in the wall of the heated tube were solved numerically. The numerical results for time-resolved centerline fuid temperature, cycle-averaged wall temperature, and the space-cycle averaged Nusselt number are shown to be in good agreement with the experimental data. Based on the experimental data, a correlation equation is obtained for the cycle-space averaged Nusselt number in terms of appropriate dimensionless parameters for a laminar reciprocating flow of air in a long pipe with constant heat flux.


Author(s):  
Hoden A. Farah ◽  
Frank K. Lu ◽  
Jim L. Griffin

Abstract A detail numerical study of detonation propagation and interaction with a flame arrestor product was conducted. The simulation domain was based on the detonation flame arrestor validation test setup. The flame arrestor element was modeled as a porous zone using the Forchheimer equation. The coefficients of the Forchheimer equation were determined using experimental data. The Forchheimer equation was incorporated into the governing equations for axisymmetric reactive turbulent flow as a momentum sink. A 21-step elementary reaction mechanism with 10 species was used to model the stoichiometric oxyhydrogen detonation. Different cases of detonation propagation including inviscid, viscous adiabatic, and viscous with heat transfer and a porous zone were studied. A detail discussion of the detonation propagation and effect of the arrestor geometry, the heat transfer and the porous zone are presented. The inviscid numerical model solutions of the detonation propagation parameters are compared to one-dimensional analytical solution for verification. The viscous solutions are qualitatively compared to historical experimental data which shows very similar trend. The effect of the porous media parameters on shock transmission and re-initiation of detonation is presented.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-24
Author(s):  
D. Reid ◽  
R. Fanni ◽  
A. Fourie

The cross-anisotropic nature of soil strength has been studied and documented for decades, including the increased propensity for cross-anisotropy in layered materials. However, current engineering practice for tailings storage facilities (TSFs) does not appear to generally include cross-anisotropy considerations in the development of shear strengths. This being despite the very common layering profile seen in subaerially-deposited tailings. To provide additional data to highlight the strength cross-anisotropy of tailings, high quality block samples from three TSFs were obtained and trimmed to enable Hollow Cylinder Torsional Shear tests to be sheared at principal stress angles of 0 and 45 degrees during undrained shearing. Consolidation procedures were carried out such that the drained rotation of principal stress angle that would precede potential undrained shear events for below-slope tailings was reasonably simulated. The results indicated the significant effects of cross-anisotropy on the undrained strength, instability stress ratio, contractive tendency and brittleness of each of the three tailings types. The magnitude of cross-anisotropy effects seen was generally consistent with previous published data on sands.


Author(s):  
Li Yabing ◽  
Zhang Han ◽  
Xiao Jianjun

A dynamic film model is developed in the parallel CFD code GASFLOW-MPI for passive containment cooling system (PCCS) utilized in nuclear power plant like AP1000 and CAP1400. GASFLOW-MPI is a widely validated parallel CDF code and has been applied to containment thermal hydraulics safety analysis for different types of reactors. The essential issue for PCCS is the heat removal capability. Research shows that film evaporation contributes most to the heat removal capability for PCCS. In this study, the film evaporation model is validated with separate effect test conducted on the EFFE facility by Pisa University. The test region is a rectangle gap with 0.1m width, 2m length, and 0.6m depth. The water film flowing from the top of the gap is heated by a heating plate with constant temperature and cooled by countercurrent air flow at the same time. The test region model is built and analyzed, through which the total thermal power and evaporation rate are obtained to compare with experimental data. Numerical result shows good agreement with the experimental data. Besides, the influence of air velocity, wall temperature and gap widths are discussed in our study. Result shows that, the film evaporation has a positive correlation with air velocity, wall temperature and gap width. This study can be fundamental for our further numerical study on PCCS.


Author(s):  
L. Liu ◽  
Q. C. Bi ◽  
G. X. Wang

This paper reports an experimental and numerical study of evaporation and cooling of a water droplet during the early stage of depressurization in a test vessel. During the experiment, a distilled water droplet was suspended on a thermocouple, which was also used to measure the droplet center temperature, and the droplet surface temperature was captured by an infrared thermograph. Experimental data indicated a large temperature difference within the droplet during the early stage of depressurization. A thermodynamic analysis of the experimental data found that the pressure reduction was not fast enough to induce liquid superheating and thus equilibrium evaporation was expected. A mathematical model was then constructed to simulate the droplet evaporation process. The model solves one-dimensional heat conduction equation for the temperature distribution inside the water droplet, with the convective heat transfer inside the droplet simplified through an effective conductivity factor. A simplified treatment was introduced to quantify the convective evaporation due to air movement and droplet swing induced by sudden opening of the electro-magnetic valve and the following air exiting. The model-predictions agree well with the measured temperature data, demonstrating the soundness of the present model.


Author(s):  
Elizaveta Ivanova ◽  
Gregory M. Laskowski

This paper presents the results of a numerical study on the predictive capabilities of Large Eddy Simulation (LES) and hybrid RANS/LES methods for heat transfer, mean velocity, and turbulence in a fundamental trailing edge slot. The geometry represents a landless slot (two-dimensional wall jet) with adjustable slot lip thickness. The reference experimental data taken from the publications of Kacker and Whitelaw [1] [2] [3] [4] contains the adiabatic wall effectiveness together with the velocity and the Reynolds-stress profiles for various blowing ratios and slot lip thicknesses. The simulations were conducted at three different lip thickness and several blowing ratio values. The comparison with the experimental data shows a general advantage of LES and hybrid RANS/LES methods against unsteady RANS. The predictive capability of the tested LES models (dynamic ksgs-equation [5] and WALE [6]) was comparable. The Improved Delayed Detached Eddy Simulation (IDDES) hybrid method [7] also shows satisfactory agreement with the experimental data. In addition to the described baseline investigations, the influence of the inlet turbulence boundary conditions and their implication for the initial mixing layer and heat transfer development were studied for both LES and IDDES.


Author(s):  
A. Vasilyev ◽  
V. Zakharov ◽  
O. Chelebyan ◽  
O. Zubkova

Abstract At the ASME Turbo Expo 2018 conference held in Oslo (Norway) on the 11th-15th of June 2018, the paper GT2018-75419 «Experience of Low-Emission Combustion of Aviation and Bio Fuels in Individual Flames after Front Mini-Modules of a Combustion Chamber» was published. This paper continues the studies devoted to the low-emission combustion of liquid fuels in GTE combustors. The paper presents a description of more detailed studies of the front module with a staged pneumatic fuel spray. The aerodynamic computations of the front module were conducted, and the disperse characteristics of the fuel-air spray were measured. The experimental research was carried out in two directions: 1) probing of the 3-burner sector flame tube at the distance of one third of its length (temperature field and gas sampling); 2) numerical study of the model combustor with actual arrangement of the modules in the dome within a wide range of fuel-air ratio. The calculated and experimental data of velocity field behind the front module were compared. And new data about the flame structure inside the test sector were obtained. Experimental data confirm the results of preliminary studies of the 3-burner sector: combustion efficiency is higher than 99.8%, EiNOx is at the level of 2–3 g/fuel kg at the combustor inlet air temperature of 680K and fuel-air ratio of 0.0225. The conducted research allowed to receive additional information on the influence of some design units on the pollutant emission and to estimate the different elements of computational methods for simulation of a low-emission combustor with a multi-atomizer dome.


Author(s):  
Shilong Zhao ◽  
Fan Yuxin ◽  
Zhang Xiaolei

Flameholder-stabilized flames are conventional and also commonly used in propulsion and various power generation fields to maintain combustion process. The characteristics of flame expansion were obtained with various blockage ratios, which were observed to be highly sensitive to inlet conditions such as temperatures and velocities. Experiments and simulations combined methodology was performed; also the approach adopted on image processing was calculated automatically through a program written in MATLAB. It was found that the change of flame expansion angle indicated increasing fuel supply could contribute to the growth of flame expansion angle in lean premixed combustion. Besides, the influence of inlet velocity on flame expansion angle varies with different blockage ratios, i.e. under a small blockage ratio (BR = 0.1), flame expansion angle declined with the increase of velocity; however, under a larger blockage ratio (BR = 0.2 or 0.3), flame expansion angle increased firstly and then decreased with the increasing velocity. Likewise, flame expansion angle increased firstly and then decreased with the increasing temperature under BR = 0.2/0.3. In addition, flame expansion angle was almost the same for BR = 0.2 and BR = 0.3 at a higher temperature (900 K), and both of which were bigger than BR = 0.1. Overall, BR = 0.2 is the best for increasing flame expansion angle and reducing total pressure loss. The influence of velocity and temperature on flame expansion angle found from this research are vital for engineering practice and for developing a further image processing method to measure flame boundary.


2020 ◽  
Vol 10 (14) ◽  
pp. 4720 ◽  
Author(s):  
Zhiqiang Teng ◽  
Shuai Teng ◽  
Jiqiao Zhang ◽  
Gongfa Chen ◽  
Fangsen Cui

The traditional methods of structural health monitoring (SHM) have obvious disadvantages such as being time-consuming, laborious and non-synchronizing, and so on. This paper presents a novel and efficient approach to detect structural damages from real-time vibration signals via a convolutional neural network (CNN). As vibration signals (acceleration) reflect the structural response to the changes of the structural state, hence, a CNN, as a classifier, can map vibration signals to the structural state and detect structural damages. As it is difficult to obtain enough damage samples in practical engineering, finite element analysis (FEA) provides an alternative solution to this problem. In this paper, training samples for the CNN are obtained using FEA of a steel frame, and the effectiveness of the proposed detection method is evaluated by inputting the experimental data into the CNN. The results indicate that, the detection accuracy of the CNN trained using FEA data reaches 94% for damages introduced in the numerical model and 90% for damages in the real steel frame. It is demonstrated that the CNN has an ideal detection effect for both single damage and multiple damages. The combination of FEA and experimental data provides enough training and testing samples for the CNN, which improves the practicability of the CNN-based detection method in engineering practice.


2008 ◽  
Vol 575-578 ◽  
pp. 316-321 ◽  
Author(s):  
H. Du ◽  
S.M. Ding

This paper puts forward a negative clearance fine-blanking theory and its technique process, and introduces the technical processing of fine-blanking which can be used on ordinary punching machines. In this paper, computer simulation and the experimental study of negative clearance fine-blanking process are carried out. Thus the parameters of the force of blanking, the value of negative clearance are determined. The effect of fine-blanking quality was obtained, and the perfect rate of the blanking fracture achieves 90%. By comparing negative clearance precise blanking with conventional blanking, the following conclusions are drawn: 1. Blanking quality of negative clearance blanking is increased by 57% than that of conventional blanking. 2. The down surface of the work-pieces obtained by the conventional blanking processing have 0.2 - 0.5 mm longitudinal burrs, while the work-pieces obtained by the negative clearance blanking have no burrs. Thus the processing of clear away the burrs could be spared. And the manpower, the material, energy and the equipment investment are saved. The researching result provides theoretic reference and the experimental data for the engineering practice. It has instructive significance and reference value to engineering manufacturing.


Sign in / Sign up

Export Citation Format

Share Document