scholarly journals Effects of Varying Noise Levels and Lighting Levels on Multimodal Speech and Visual Gesture Interaction with Aerobots

2019 ◽  
Vol 9 (10) ◽  
pp. 2066
Author(s):  
Ayodeji Opeyemi Abioye ◽  
Stephen D. Prior ◽  
Peter Saddington ◽  
Sarvapali D. Ramchurn

This paper investigated the effects of varying noise levels and varying lighting levels on speech and gesture control command interfaces for aerobots. The aim was to determine the practical suitability of the multimodal combination of speech and visual gesture in human aerobotic interaction, by investigating the limits and feasibility of use of the individual components. In order to determine this, a custom multimodal speech and visual gesture interface was developed using CMU (Carnegie Mellon University) sphinx and OpenCV (Open source Computer Vision) libraries, respectively. An experiment study was designed to measure the individual effects of each of the two main components of speech and gesture, and 37 participants were recruited to participate in the experiment. The ambient noise level was varied from 55 dB to 85 dB. The ambient lighting level was varied from 10 Lux to 1400 Lux, under different lighting colour temperature mixtures of yellow (3500 K) and white (5500 K), and different background for capturing the finger gestures. The results of the experiment, which consisted of around 3108 speech utterance and 999 gesture quality observations, were presented and discussed. It was observed that speech recognition accuracy/success rate falls as noise levels rise, with 75 dB noise level being the aerobot’s practical application limit, as the speech control interaction becomes very unreliable due to poor recognition beyond this. It was concluded that multi-word speech commands were considered more reliable and effective than single-word speech commands. In addition, some speech command words (e.g., land) were more noise resistant than others (e.g., hover) at higher noise levels, due to their articulation. From the results of the gesture-lighting experiment, the effects of both lighting conditions and the environment background on the quality of gesture recognition, was almost insignificant, less than 0.5%. The implication of this is that other factors such as the gesture capture system design and technology (camera and computer hardware), type of gesture being captured (upper body, whole body, hand, fingers, or facial gestures), and the image processing technique (gesture classification algorithms), are more important in developing a successful gesture recognition system. Some further works were suggested based on the conclusions drawn from this findings which included using alternative ASR (Automatic Speech Recognition) speech models and developing more robust gesture recognition algorithm.

2011 ◽  
Vol 22 (02) ◽  
pp. 065-080 ◽  
Author(s):  
Alison M. Brockmeyer ◽  
Lisa G. Potts

Background: Difficulty understanding in background noise is a common complaint of cochlear implant (CI) recipients. Programming options are available to improve speech recognition in noise for CI users including automatic dynamic range optimization (ADRO), autosensitivity control (ASC), and a two-stage adaptive beamforming algorithm (BEAM). However, the processing option that results in the best speech recognition in noise is unknown. In addition, laboratory measures of these processing options often show greater degrees of improvement than reported by participants in everyday listening situations. To address this issue, Compton-Conley and colleagues developed a test system to replicate a restaurant environment. The R-SPACE™ consists of eight loudspeakers positioned in a 360 degree arc and utilizes a recording made at a restaurant of background noise. Purpose: The present study measured speech recognition in the R-SPACE with four processing options: standard dual-port directional (STD), ADRO, ASC, and BEAM. Research Design: A repeated-measures, within-subject design was used to evaluate the four different processing options at two noise levels. Study Sample: Twenty-seven unilateral and three bilateral adult Nucleus Freedom CI recipients. Intervention: The participants’ everyday program (with no additional processing) was used as the STD program. ADRO, ASC, and BEAM were added individually to the STD program to create a total of four programs. Data Collection and Analysis: Participants repeated Hearing in Noise Test sentences presented at 0 degrees azimuth with R-SPACE restaurant noise at two noise levels, 60 and 70 dB SPL. The reception threshold for sentences (RTS) was obtained for each processing condition and noise level. Results: In 60 dB SPL noise, BEAM processing resulted in the best RTS, with a significant improvement over STD and ADRO processing. In 70 dB SPL noise, ASC and BEAM processing had significantly better mean RTSs compared to STD and ADRO processing. Comparison of noise levels showed that STD and BEAM processing resulted in significantly poorer RTSs in 70 dB SPL noise compared to the performance with these processing conditions in 60 dB SPL noise. Bilateral participants demonstrated a bilateral improvement compared to the better monaural condition for both noise levels and all processing conditions, except ASC in 60 dB SPL noise. Conclusions: The results of this study suggest that the use of processing options that utilize noise reduction, like those available in ASC and BEAM, improve a CI recipient's ability to understand speech in noise in listening situations similar to those experienced in the real world. The choice of the best processing option is dependent on the noise level, with BEAM best at moderate noise levels and ASC best at loud noise levels for unilateral CI recipients. Therefore, multiple noise programs or a combination of processing options may be necessary to provide CI users with the best performance in a variety of listening situations.


1974 ◽  
Vol 13 (02) ◽  
pp. 193-206
Author(s):  
L. Conte ◽  
L. Mombelli ◽  
A. Vanoli

SummaryWe have put forward a method to be used in the field of nuclear medicine, for calculating internally absorbed doses in patients. The simplicity and flexibility of this method allow one to make a rapid estimation of risk both to the individual and to the population. In order to calculate the absorbed doses we based our procedure on the concept of the mean absorbed fraction, taking into account anatomical and functional variability which is highly important in the calculation of internal doses in children. With this aim in mind we prepared tables which take into consideration anatomical differences and which permit the calculation of the mean absorbed doses in the whole body, in the organs accumulating radioactivity, in the gonads and in the marrow; all this for those radionuclides most widely used in nuclear medicine. By comparing our results with dose obtained from the use of M.I.R.D.'s method it can be seen that when the errors inherent in these types of calculation are taken into account, the results of both methods are in close agreement.


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Author(s):  
Gianluca Sampieri ◽  
Amirpouyan Namavarian ◽  
Marc Levin ◽  
Justine Philteos ◽  
Jong Wook Lee ◽  
...  

Abstract Objective Noise in operating rooms (OR) can have negative effects on both patients and surgical care workers. Noise can also impact surgical performance, team communication, and patient outcomes. Such implications of noise have been studied in orthopedics, neurosurgery, and urology. High noise levels have also been demonstrated in Otolaryngology-Head and Neck Surgery (OHNS) procedures. Despite this, no previous study has amalgamated the data on noise across all OHNS ORs to determine how much noise is present during OHNS surgeries. This study aims to review all the literature on noise associated with OHNS ORs and procedures. Methods Ovid Medline, EMBASE Classic, Pubmed, SCOPUS and Cochrane databases were searched following PRISMA guidelines. Data was collected on noise measurement location and surgery type. Descriptive results and statistical analysis were completed using Stata. Results This search identified 2914 articles. Final inclusion consisted of 22 studies. The majority of articles analyzed noise level exposures during mastoid surgery (18/22, 82%). The maximum noise level across all OHNS ORs and OHNS cadaver studies were 95.5 a-weighted decibels (dBA) and 106.6 c-weighted decibels (dBC), respectively (P = 0.2068). The mean noise level across all studies was significantly higher in OHNS cadaver labs (96.9 dBA) compared to OHNS ORs (70.1 dBA) (P = 0.0038). When analyzed together, the mean noise levels were 84.9 dBA. Conclusions This systematic review demonstrates that noise exposure in OHNS surgery exceeds safety thresholds. Further research is needed to understand how noise may affect team communication, surgical performance and patient outcomes in OHNS ORs. Graphical abstract


2021 ◽  
pp. 1-11
Author(s):  
P. N. R. L. Chandra Sekhar Author ◽  
T. N. Shankar Author

In the era of digital technology, it becomes easy to share photographs and videos using smartphones and social networking sites to their loved ones. On the other hand, many photo editing tools evolved to make it effortless to alter multimedia content. It makes people accustomed to modifying their photographs or videos either for fun or extracting attention from others. This altering brings a questionable validity and integrity to the kind of multimedia content shared over the internet when used as evidence in Journalism and Court of Law. In multimedia forensics, intense research work is underway over the past two decades to bring trustworthiness to the multimedia content. This paper proposes an efficient way of identifying the manipulated region based on Noise Level inconsistencies of spliced mage. The spliced image segmented into irregular objects and extracts the noise features in both pixel and residual domains. The manipulated region is then exposed based on the cosine similarity of noise levels among pairs of individual objects. The experimental results reveal the effectiveness of the proposed method over other state-of-art methods.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2471 ◽  
Author(s):  
Daniel Flor ◽  
Danilo Pena ◽  
Luan Pena ◽  
Vicente A. de Sousa ◽  
Allan Martins

Vehicular acoustic noise evaluations are a concern of researchers due to health and comfort effects on humans and are fundamental for anyone interested in mitigating audio noise. This paper focuses on the evaluation of the noise level inside a vehicle by using statistical tools. First, an experimental setup was developed with microphones and a microcomputer located strategically on the car’s panel, and measurements were carried out with different conditions such as car window position, rain, traffic, and car speed. Regression analysis was performed to evaluate the similarity of the noise level from those conditions. Thus, we were able to discuss the relevance of the variables that contribute to the noise level inside a car. Finally, our results revealed that the car speed is strongly correlated to interior noise levels, suggesting the most relevant noise sources are in the vehicle itself.


2020 ◽  
Vol 164 ◽  
pp. 10015
Author(s):  
Irina Gurtueva ◽  
Olga Nagoeva ◽  
Inna Pshenokova

This paper proposes a concept of a new approach to the development of speech recognition systems using multi-agent neurocognitive modeling. The fundamental foundations of these developments are based on the theory of cognitive psychology and neuroscience, and advances in computer science. The purpose of this work is the development of general theoretical principles of sound image recognition by an intelligent robot and, as the sequence, the development of a universal system of automatic speech recognition, resistant to speech variability, not only with respect to the individual characteristics of the speaker, but also with respect to the diversity of accents. Based on the analysis of experimental data obtained from behavioral studies, as well as theoretical model ideas about the mechanisms of speech recognition from the point of view of psycholinguistic knowledge, an algorithm resistant to variety of accents for machine learning with imitation of the formation of a person’s phonemic hearing has been developed.


2021 ◽  
Vol 1 (2) ◽  
pp. 032-040
Author(s):  
Chris Onyeka Ekweozor ◽  
Johnbosco Emeka Umunnakwe ◽  
Leo O Osuji ◽  
Vincent C Weli

This study evaluated noise pollution in Onitsha metropolis, Anambra State, Nigeria in 2019. Noise levels were measured at forty sampling stations in the morning, afternoon and night within the study area for dry and wet seasons using modern noise level instruments. A control point was established at ldeani/Nnobi Junction with coordinates N 06o 05’.282’’ E 006o 55’.891’’ which was used as a reference point and for comparison with the sound levels recorded in designated locations. The results showed that the maximum noise level in the study area exceeded the Federal Ministry of Environment (FMEnv) limit by 7.8% in the dry season and by 13.11% in the wet season. Noise LAeq exceeded the NESREA LAeq limit by 29.89% in the dry season and by 33.44% in the wet season. The study indicated that the mean noise levels in the dry and wet seasons were within FMEnv limit of 90dB .It also showed that high noise levels were recorded around major junctions and market places within Onitsha, which are harmful to public health. The study further showed that transportation activities and trading activities at the market places are the main sources of high noise levels in the study area. Health impact assessment should be conducted in Onitsha metropolis for residents. State government should enforce compliance laws and regulate the activities of industries in the areas.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. F187-F197 ◽  
Author(s):  
Ben K. Sternberg

The variability of naturally occurring magnetic fields in the frequency range from [Formula: see text] over a period of one year was studied. Contour plots for the [Formula: see text], [Formula: see text], and [Formula: see text] components and for frequencies of 10, 100, 1000, 2000, and 8000 Hz were produced. Average, minimum, maximum, and the standard deviations of these fields were also calculated for 12 distinctive time intervals. In the 1– to 8–kHz frequency range, the noise levels are typically higher at night. In the 10- to 100-Hz frequency range, the noise levels are typically higher during the day. During mid- to late-summer, there is frequent thunderstorm activity, known in the southwest United States as the monsoon season. The magnetic field levels are often very high during this time period. These variability ranges can be used to estimate the lowest levels of noise that may be encountered during field surveys, which iswhat the authors are looking for when running controlled-source electrical method surveys. These variability ranges can also be used to estimate the highest levels that may be encountered, which is what the authors are looking for when running natural-source electrical methods surveys, such as audio frequency magnetotelluric (AMT) surveys. These measurements of magnetic field strength variability show that better data for controlled-source electrical measurements can be obtained using the minimum noise level measurements, as opposed to using signal integration or signal averaging with all of the data. The minimum noise level is found by using frequency bins adjacent to the signal-frequency bin. Likewise, if one is interested in measuring the naturally occurring magnetic field data, using the maximum values during each time interval makes AMT measurements possible when the natural signal level is very low, particularly in the AMT dead zone around [Formula: see text].


2021 ◽  
Vol 6 (166) ◽  
pp. 196-203
Author(s):  
E. Lezhneva ◽  
I. Lynnyk ◽  
K. Vakulenko ◽  
N. Sokolova

Nowadays, on the territory of large cities, there is an increase in emissions of harmful substances into the atmosphere. The reasons for this are manifold: violation of design technological regimes, outdated equipment, an increase in the volume of road transport. The constantly growing intensity of traffic flows is annually accompanied by an increase in the anthropogenic load on the population of modern cities. With the increase in the number of vehicles on the streets of large cities, the world community has identified noise as one of the main factors that worsen the standard of living of people. To assess the noise pollution of the environment by road transport, a typical area of the urban area in the Kharkiv micro district was chosen. The study consisted of four main stages: Stage I – assessment of the road condition and environmental situation in the courtyards of the micro district; Stage II – assessment of acoustic pollution of the main area; Stage III – assessment of the concentration of pollutants; Stage IV – measures to reduce the level of environmental hazard. The study revealed that residential areas around Gagarin Avenue are prone to high noise levels and high concentrations of pollutants in the air. So, Gagarin Avenue is in the zone of acoustic discomfort (noise level 80 dBA), which exceeds the permissible noise level, while the degree of man-made impact on the environment during road operation is 1000 UAH / hour for every 100 people. Based on the results of calculations of the concentrations of pollutants from vehicles along Gagarin Avenue, it was found that for almost all substances their concentrations exceed the MPC by more than 3 times. Analysis of the experience of European countries in the use of noise protection screens with integrated solar panels allowed us to propose a model of noise protection barrier with integrated solar panels, which can be used to protect the urban environment from noise, sound waves and exhaust chemicals. gases from internal combustion engines. It has been established that the placement of a combined noise protection screen will reduce the noise level by about 8–15 dBA. Noise load maps were built in the main area before and after the implementation of the environmental measure. The results of the study will make it possible to introduce administrative and legislative measures to ensure regulatory noise levels for residential areas adjacent to highways and environmental safety when organizing traffic on the streets of large cities.


Sign in / Sign up

Export Citation Format

Share Document