scholarly journals GAT1 Gene, the GATA Transcription Activator, Regulates the Production of Higher Alcohol during Wheat Beer Fermentation by Saccharomyces cerevisiae

2021 ◽  
Vol 8 (5) ◽  
pp. 61
Author(s):  
Ya-Ping Wang ◽  
Lin Liu ◽  
Xue-Shan Wang ◽  
Kun-Qiang Hong ◽  
Li-Hua Zhang ◽  
...  

Uncoordinated carbon-nitrogen ratio in raw materials will lead to excessive contents of higher alcohols in alcoholic beverages. The effect of GAT1 gene, the GATA transcription activator, on higher alcohol biosynthesis was investigated to clarify the mechanism of Saccharomyces cerevisiae regulating higher alcohol metabolism under high concentrations of free amino nitrogen (FAN). The availability of FAN by strain SDT1K with a GAT1 double-copy deletion was 28.31% lower than that of parent strain S17, and the yield of higher alcohols was 33.91% lower. The transcript levels of the downstream target genes of GAT1 and higher alcohol production in the double-copy deletion mutant suggested that a part of the effect of GAT1 deletion on higher alcohol production was the downregulation of GAP1, ARO9, and ARO10. This study shows that GATA factors can effectively regulate the metabolism of higher alcohols in S. cerevisiae and provides valuable insights into higher alcohol biosynthesis, showing great significance for the wheat beer industry.

1990 ◽  
Vol 36 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Paolo Giudici ◽  
Patrizia Romano ◽  
Carlo Zambonelli

A hundred strains of Saccharomyces cerevisiae were examined for the ability to produce higher alcohols. In the strains tested the production of higher alcohols was found to be an individual strain characteristic and, as such, was statistically significant. The characteristics of the strains used (flocculation ability, foaming ability, killer character, and non-H2S production) were found to be uncorrelated to isobutanol and isoamyl alcohol production, whereas the production of high levels of n-propanol was found to be related to inability to produce H2S. This, in turn, suggests a link to methionine biosynthesis. Key words: Saccharomyces cerevisiae, higher alcohols, biometry, H2S production.


1993 ◽  
Vol 50 (3) ◽  
pp. 484-489 ◽  
Author(s):  
L.E. Gutierrez

A study was carried out in order to determine the effect of vitamins (biotin, thiamine, pantotheniic acid and pyridoxal) and micronutrient (zinc, boron, manganese and iron) deficiencies on higher alcohol production during alcoholic fermentation with the industrially used yeast Saccharomyces cerevisiae M-300-A. Zinc deficiency induced a reduction on the levels of isobutyl and isoamyl alcohols. An increase on isobutyl alcohol (fivefold) and a reduction of isoamyl alcohol (two fold) and n-propyl alcohol (three fold) contents resulted from pantotheiiic acid deficiency, whereas pyridoxal deficiency caused an increase on the levels of isobutyl and isoamyl alcohols. Biotin was not essential for the growth of this strain.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ya-Ping Wang ◽  
Xiao-Qing Wei ◽  
Xue-Wu Guo ◽  
Dong-Guang Xiao

The higher alcohols produced by Saccharomyces cerevisiae exert remarkable influence on the taste and flavour of Chinese Baijiu. In order to study the regulation mechanism of amino acid metabolism genes on higher alcohol production, eight recombinant strains with amino acid metabolism gene deletion were constructed. The growth, fermentation performance, higher alcohol production, and expression level of genes in recombinant and original α5 strains were determined. Results displayed that the total higher alcohol concentration in α5ΔGDH1 strain decreased by 27.31% to 348.68 mg/L compared with that of α5. The total content of higher alcohols in α5ΔCAN1 and α5ΔGAT1 strains increased by 211.44% and 28.36% to 1493.96 and 615.73 mg/L, respectively, compared with that of α5. This study is the first to report that the CAN1 and GAT1 genes have great influence on the generation of higher alcohols. The results demonstrated that amino acid metabolism plays a substantial role in the metabolism of higher alcohols by S. cerevisiae. Interestingly, we also found that gene knockout downregulated the expression levels of the knocked out gene and other genes in the recombinant strain and thus affected the formation of higher alcohols by S. cerevisiae. This study provides worthy insights for comprehending the metabolic mechanism of higher alcohols in S. cerevisiae for Baijiu fermentation.


2021 ◽  
pp. 66-73
Author(s):  
Helen Oganesyan ◽  
Iulia Kolesnichenko ◽  
Galina Sroslova

The main quantity of the produced ethyl alcohol is consumed by the food industry as a basis for the manufacture of alcoholic beverages, pharmaceuticals and other alcohol-containing products. In addition to food production, ethyl alcohol is widely used in medicine, perfumery, and other industries. The actual problem of alcohol production is finding ways to reduce the cost of raw materials and energy resources but still getting the world quality standard of alcohol. The best solution to the problem is to improve the technological schemes of rectification plants. For this, information was updated on modern schemes and methods for obtaining rectified alcohol. During the research, and information search was carried out in Russian and English language literary sources. A comparative analysis of books, manuals and articles on this topic was carried out, as well as the GOSTs requirements for rectification columns over the past few years were studied. The main components of rectification units were considered: contact devices (types of plate and packed devices) and rectification columns (applied pressure: atmospheric, vacuum, under a certain pressure; and their total number).Progressive schemes used in modern alcohol production in Russia and abroad (Ukraine, USA, France, Finland) were considered. Based on the received data, the following conclusions were formulated: the most effective types of contact devices are sieve and valve trays, among the packing there are Raschig rings, a promising type of columns is disc-type, the most popular scheme for the operation of a rectification plant is a combination of work under pressure and vacuum.


2020 ◽  
Vol 9 (10) ◽  
pp. e8299109135
Author(s):  
Amazile Biagioni Maia ◽  
Lorena Simão Marinho ◽  
David Lee Nelson

There is a growing interest in chemical markers for the identification and certification of cachaça as a cane spirit produced in Brazil. It is known that the higher alcohols that are usually analyzed (propyl alcohol, Isobutyl alcohol and isoamyl alcohol) occur in all alcoholic beverages (fermented and distilled), but the relative proportions can vary markedly according to the peculiarities of the raw material and the production process. In this work, the contents of higher alcohols in 300 samples of alembic cachaça were compared, 220 from the state of Minas Gerais and 80 from other states, as well as three samples of industrial cachaça and 14 samples of whiskeys of various brands. The typical range of total higher alcohols in cachaça was 180-360 mg/100 mL ethanol. Cachaça containing higher alcohol concentrations greater than 360 mg/100 mL ethanol do not comply with Brazilian legislation. However, cachaças with higher alcohols concentrations below 180 mg/100 mL ethanol, as was found in one of the industrial cachaças, signify adulteration, for example, by mixing with fuel alcohol. The C4/C5 ratio varied less than the C3/C5 ratio, being consistently within the range of 0.20-0.50. In the whiskeys analyzed, the concentrations of higher alcohols were in the range of 160 and 270 mg/100 mL. Therefore, this parameter would not assist in differentiating between cachaça and whiskey. But the C4/C5 ratio was consistently different, being always greater than 0.50 for the whiskeys. Thus, the routine analysis of higher alcohols provides useful information both for tracking possible fraud and for assessments related to the identity or origin of cachaça.


Author(s):  
Alan Kelly

In the last chapter, yeast was mentioned a few times as one of the generally less-problematic microbial denizens of food systems, and in fact the roles of yeast in the production of two of our most common and popular food categories, alcoholic beverages and bakery products such as bread, are so critical that it is worth dedicating a whole chapter just to the consideration of the science of these products. The ability of yeast to grow in a wide range of raw materials and convert sugars to alcohol, carbon dioxide, and other interesting products is the basis for production of products such as wine and beer, as well as higher-alcohol-level spirits, and is a process that has been exploited for the purposes of human pleasure for thousands of years. The origins of alcoholic fermentations, like those of many food products, are somewhat murky, but it is thought that honey or fruit may have been the original basis for the fermentation of such products, and that wine arose because of accidental adventitious spoilage of grapes and their juice that turned out to have, well, interesting consequences. The Greeks and Romans had wine-making down to an art, and it features frequently in their art; it also makes many appearances in the Bible (including a nonscientifically verifiable production protocol based apparently solely on water). The main reason alcoholic fermentation became of interest was as a way to prevent bacteria or other undesirable microorganisms from growing in juice by allowing a different kind of microorganism to get there first, use up the goodies, and produce products that made conditions highly unsuitable for colonization by later invaders. We routinely associate the word “intoxicated” with a formal description of the result of overconsumption of the outputs of such fermentation, but the heart of that word is “toxic,” which reminds us that alcohol is a poison. It just happens to be one that humans can tolerate only up to certain levels, beyond which poisoning and death can readily occur, but at lower levels has a range of effects that need not be described here.


2019 ◽  
Vol 2 (2) ◽  
pp. 23-26
Author(s):  
GUL GHUTAI ABDULLAH ◽  
Naseer Ahmed ◽  
Arsalan Ahmed Shah ◽  
Abdul samad ◽  
Tauseef M Asmat

On Earth there are several organisms that share close relationship with humankind and Saccharomyces cerevisiae is one of them. Saccharomyces cerevisiae is also known as the brewer´s or baker´s yeast and has been used for fermentation and production of bread and alcoholic beverages since long time. The purpose of this study was to evaluate the fermentation capability of Saccharomyces cerevisiae local isolates. For this purpose 100 fruit samples (mango, sugarcane, orange, honey melon, grapes) were collected from local fruit markets and subjected to identification by standard microbiology tests and advance molecular techniques like Polymerase reaction test (PCR). The results revealed the typical growth, shape and color of S. cerevisiae on YPD media. The growth culture subjected to microscopy showed the budding characteristic of S. cerevisiae.  The initial identified strains by virtue of YPD selective media and microscopy were subjected to PCR. The PCR results revealed the presence of S. cerevisiae in 28 samples among all analyzed samples. Importantly, the presence of S. cerevisiae was detected 30% in oranges, in mango 27.77%, in sugarcane 35% while in honey melon and grapes it was 13.63%, 31.81% respectively. This study concludes that S. cerevisiae was more abundant in sugarcane and grapes analyzed samples. The collected strains of present study may be further used in future studies like ethanol production from raw materials and also used as reference strain when working with samples of unknown nature


2019 ◽  
Vol 46 (7) ◽  
pp. 1003-1011 ◽  
Author(s):  
Kun-Qiang Hong ◽  
Xiao-Meng Fu ◽  
Sheng-Sheng Dong ◽  
Dong-guang Xiao ◽  
Jian Dong

2019 ◽  
Vol 12 (4) ◽  
Author(s):  
L. Levandovsky ◽  
М. Kravchenko

The article presents the results of investigating how the intensity of aerating the medium effects on the cultivation process and the metabolic activity of alcoholic yeast Saccharomyces cerevisiae, strain U-563, in the modern technology of alcohol and baking yeast from molasses. The chemical and technological parameters of media at the aerobic and anaerobic stages of the process, the level of accumulation of the major and secondary products of yeast metabolism, and their enzymatic activity have been determined by methods commonly employed in science and in the practice of alcohol biotechnology. The objects of research were the yeast Saccharomyces cerevisiae, molasses wort, the medium in the process of yeast cultivation, and fermented wash. It has been established that two factors are the most important in the accumulation of alcoholic yeast biomass: the intensity of aerating the medium, and the staged introduction of the substrate during biomass cultivation. The more aerated the medium, the more intensively secondary metabolites of yeast Saccharomyces cerevisiae are formed (glycerol, aldehydes, higher alcohols, volatile acids, and esters) – both at the yeast generation stage and during anaerobic fermentation. When yeast Saccharomyces cerevisiae is grown in a gradient-continuous manner in a battery of series-connected apparatuses, with undiluted substrate (molasses) added by degrees, yeast biosynthesis is significantly enhanced compared to the traditional homogeneous-continuous method. The results obtained indicate the active metabolism of carbohydrates in the Krebs cycle, when the medium is intensively aerated. Besides, the results reveal the high reactivity of aldehydes and esters that results in their transformation into other compounds, and in a great decrease in their amount at the anaerobic stage of the process. However, a progressive increase is observed in glycerol, higher alcohols, and volatile acids, starting from the first yeast generator and up to the last fermentation apparatus, irrespective of the level of aerating the medium during yeast cultivation. These findings can be effectively used to manufacture food, technical, and fuel ethanol industrially from sugar-based raw materials in the course of co-production of alcohol and baking yeast.


2021 ◽  
Vol 896 (1) ◽  
pp. 012019
Author(s):  
I Munfarida ◽  
M Munir ◽  
A Rezagama

Abstract Indonesia’s energy demand has increased in recent years in line with the increase in economic growth and population in Indonesia. Most of this energy is derived from non-renewable sources such as oil, natural gas, and coal. These trends will have a significant impact on energy depletion. One solution to overcome this problem is developing alternative energy resources to replace petroleum, such as bio-alcohol. The objective of this study was to analyze the potential of bio-alcohol production from organic waste, that is, banana peel. This research is experimental. Bio-alcohol was obtained through a fermentation process of 3 types of banana peels waste, including Raja banana (Musa acuminata×M. balbisiana) peel, Agung banana (Musa paradisiaca) peel, and Nangka banana (Musa acuminata×M. balbisiana) peel. Fermentation was conducted using variations of Saccharomyces cerevisiae of 1%, 3%, and 5% with a fermentation time of 5 days. All experiments were performed in duplicate. The results showed that the highest value of bio-alcohol was produced from the waste of Raja Nangka peel at a concentration of 5% Saccharomyces cerevisiae, which was 1.70% (p-value <0.05). This study suggests the potential of banana peel waste in producing bio-alcohol as alternative energy in the future.


Sign in / Sign up

Export Citation Format

Share Document