scholarly journals Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 961
Author(s):  
Qiuwei Zhang ◽  
James F. White

Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes—microbes that colonize and infect plant tissues without causing apparent disease—may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.

2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2020 ◽  
Vol 26 (39) ◽  
pp. 4955-4969
Author(s):  
Ravi Sahukari ◽  
Jyothi Punabaka ◽  
Shanmugam Bhasha ◽  
Venkata S. Ganjikunta ◽  
Shanmugam K. Ramudu ◽  
...  

Background: The prevalence of diabetes in the world population hás reached 8.8 % and is expected to rise to 10.4% by 2040. Hence, there is an urgent need for the discovery of drugs against therapeutic targets to sojourn its prevalence. Previous studies proved that NF-κB serves as a central agent in the development of diabetic complications. Objectives: This review intended to list the natural plant compounds that would act as inhibitors of NF-κB signalling in different organs under the diabetic condition with their possible mechanism of action. Methods: Information on NF-κB, diabetes, natural products, and relation in between them, was gathered from scientific literature databases such as Pubmed, Medline, Google scholar, Science Direct, Springer, Wiley online library. Results and Conclusion: NF-κB plays a crucial role in the development of diabetic complications because of its link in the expression of genes that are responsible for organs damage such as kidney, brain, eye, liver, heart, muscle, endothelium, adipose tissue and pancreas by inflammation, apoptosis and oxidative stress. Activation of PPAR-α, SIRT3/1, and FXR through many cascades by plant compounds such as terpenoids, iridoids, flavonoids, alkaloids, phenols, tannins, carbohydrates, and phytocannabinoids recovers diabetic complications. These compounds also exhibit the prevention of NF-κB translocation into the nucleus by inhibiting NF-κB activators, such as VEGFR, RAGE and TLR4 receptors, which in turn, prevent the activation of many genes involved in tissue damage. Current knowledge on the treatment of diabetes by targeting NF-κB is limited, so future studies would enlighten accordingly.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


2017 ◽  
Vol 11 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Seyyed Morteza Hoseini ◽  
Amalia Pérez-Jiménez ◽  
Benjamin Costas ◽  
Rita Azeredo ◽  
Manuel Gesto

Author(s):  
Analia Lorena Tomat ◽  
Francisco Javier Salazar

AbstractA substantial body of epidemiological and experimental evidence suggests that a poor fetal and neonatal environment may “program” susceptibility in the offspring to later development of cardiovascular, renal and metabolic diseases.This review focuses on current knowledge from the available literature regarding the mechanisms linking an adverse developmental environment with an increased risk for cardiovascular, renal and metabolic diseases in adult life. Moreover, this review highlights important sex-dependent differences in the adaptation to developmental insults.Developmental programming of several diseases is secondary to changes in different mechanisms inducing important alterations in the normal development of several organs that lead to significant changes in birth weight. The different diseases occurring as a consequence of an adverse environment during development are secondary to morphological and functional cardiovascular and renal changes, to epigenetic changes and to an activation of several hormonal and regulatory systems, such as angiotensin II, sympathetic activity, nitric oxide, COX2-derived metabolites, oxidative stress and inflammation. The important sex-dependent differences in the developmental programming of diseases seem to be partly secondary to the effects of sex hormones. Recent studies have shown that the progression of these diseases is accelerated during aging in both sexes.The cardiovascular, renal and metabolic diseases during adult life that occur as a consequence of several insults during fetal and postnatal periods are secondary to multiple structural and functional changes. Future studies are needed in order to prevent the origin and reduce the incidence and consequences of developmental programmed diseases.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 283
Author(s):  
Daniel Aghaie Madsen ◽  
Sissel Ida Schmidt ◽  
Morten Blaabjerg ◽  
Morten Meyer

Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson’s disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.


2018 ◽  
Vol 19 (11) ◽  
pp. 3430 ◽  
Author(s):  
Blaise Muvunyi ◽  
Qi Yan ◽  
Fan Wu ◽  
Xueyang Min ◽  
Zhuan Yan ◽  
...  

Plant growth and development depends on its ability to maintain optimal cellular homeostasis during abiotic and biotic stresses. Cleistogenes songorica, a xerophyte desert plant, is known to have novel drought stress adaptation strategies and contains rich pools of stress tolerance genes. Proteins encoded by Late Embryogenesis Abundant (LEA) family genes promote cellular activities by functioning as disordered molecules, or by limiting collisions between enzymes during stresses. To date, functions of the LEA family genes have been heavily investigated in many plant species except perennial monocotyledonous species. In this study, 44 putative LEA genes were identified in the C. songorica genome and were grouped into eight subfamilies, based on their conserved protein domains and domain organizations. Phylogenetic analyses indicated that C. songorica Dehydrin and LEA_2 subfamily proteins shared high sequence homology with stress responsive Dehydrin proteins from Arabidopsis. Additionally, promoter regions of CsLEA_2 or CsDehydrin subfamily genes were rich in G-box, drought responsive (MBS), and/or Abscisic acid responsive (ABRE) cis-regulatory elements. In addition, gene expression analyses indicated that genes from these two subfamilies were highly responsive to heat stress and ABA treatment, in both leaves and roots. In summary, the results from this study provided a comprehensive view of C. songorica LEA genes and the potential applications of these genes for the improvement of crop tolerance to abiotic stresses.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Jose F. Téllez-Zenteno ◽  
Lizbeth Hernández-Ronquillo

Partial-onset epilepsies account for about 60% of all adult epilepsy cases, and temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for epilepsy surgery and often refractory to antiepileptic drugs (AEDs). Little is known about the epidemiology of TLE, because it requires advanced neuroimaging, positive EEG, and appropriate clinical semiology to confirm the diagnosis. Moreover, recently recognized incidentally detected mesial temporal sclerosis in otherwise healthy individuals and benign temporal epilepsy indicate that the true epidemiology of TLE is underestimated. Our current knowledge on the epidemiology of TLE derives from data published from tertiary referral centers and/or inferred from population-based studies dealing with epilepsy. This article reviews the following aspects of the epidemiology of TLE: definitions, studies describing epidemiological rates, methodological observations, the interpretation of available studies, and recommendations for future studies.


2019 ◽  
Vol 71 (17) ◽  
pp. 5205-5222 ◽  
Author(s):  
Ales Pecinka ◽  
Christian Chevalier ◽  
Isabelle Colas ◽  
Kriton Kalantidis ◽  
Serena Varotto ◽  
...  

Abstract Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.


Hydrobiologia ◽  
2019 ◽  
Vol 847 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Noémi Menczelesz ◽  
Ildikó Szivák ◽  
Dénes Schmera

Abstract Experimental streams are bounded and partly enclosed lotic units that facilitate the simulation of certain aspects of natural stream ecosystems under controlled conditions. We summarized the current knowledge regarding experimental streams in order to support researchers in designing and undertaking future studies using experimental streams. We observed an increase in the number of such studies since 1975. The geographically uneven distribution of studies suggests that the generalization of findings to global scale may not be straightforward. Our results indicate that macroinvertebrates, fish, and algae are the most frequently studied organisms and that the size of the experimental streams was related to the focal organism group(s) studied. The size of the units decreased over time, while the number of treatments, interpreted as the combination of the levels of factors, increased. These results suggest that biologically complex studies have gradually been replaced by biologically less complex ones. In contrast, the experimental complexity (the number of treatments) and the statistical power (number of replication) increased. Finally, we identified a number of important, but poorly documented pieces of information regarding experimental stream systems and experimental protocols and made recommendations for future research.


Sign in / Sign up

Export Citation Format

Share Document