scholarly journals In Vitro Anticancer Properties of Copper Metallodendrimers

Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 155 ◽  
Author(s):  
Hołota ◽  
Magiera ◽  
Michlewska ◽  
Kubczak ◽  
del Olmo ◽  
...  

Newly synthesized carbosilane copper dendrimers (CCD) with chloride and nitrate surface groups seem to be good candidates to be used as gene and drug carriers in anti-cancer therapy, due to their properties such as size and surface charge. Copper attached to the nanoparticles is an important element of many biological processes and recently their anti-cancer properties have been widely examined. Zeta size and potential, transmission electron microscopy (TEM), circular dichroism (CD), analysis of haemolytic activity, and fluorescence anisotropy techniques were used to characterize copper dendrimers. Additionally, their cytotoxic properties toward normal (PBMC) and cancer (1301; HL-60) cells were examined. All tested dendrimers were more cytotoxic against cancer cells in comparison with normal cells.

2018 ◽  
Vol 18 (2) ◽  
pp. 302-311
Author(s):  
Shulin Dai ◽  
Yucheng Feng ◽  
Shuyi Li ◽  
Yuxiao Chen ◽  
Meiqing Liu ◽  
...  

Background: Micelles as drug carriers are characterized by their inherent instability due to the weak physical interactions that facilitate the self-assembly of amphiphilic block copolymers. As one of the strong physical interactions, the stereocomplexation between the equal molar of enantiomeric polylactides, i.e., the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), may be harnessed to obtain micelles with enhanced stability and drug loading capacity and consequent sustained release. </P><P> Aims/Methods: In this paper, stereocomplexed micelles gama-PGA-g-PLA micelles) were fabricated from the stereocomplexation between poly(gama-glutamic acid)-graft-PLLA gama-PGA-g-PLA) and poly(gamaglutamic acid)-graft-PDLA gama-PGA-g-PLA). These stereocomplexed micelles exhibited a lower CMC than the corresponding enantiomeric micelles. Result: Furthermore, they showed higher drug loading content and drug loading efficiency in addition to more sustained drug release profile in vitro. In vivo imaging confirmed that the DiR-encapsulated stereocomplexed gama-PGA-g-PLA micelles can deliver anti-cancer drug to tumors with enhanced tissue penetration. Overall, gama-PGA-g-PLA micelles exhibited greater anti-cancer effects as compared with the free drug and the stereocomplexation may be a promising strategy for fabrication of anti-cancer drug carriers with significantly enhanced efficacy.


Author(s):  
Mei-Xia Zhao ◽  
Di-Feng Chen ◽  
Xue-Jie Zhao ◽  
Lin-Song Li ◽  
Yong-Fang Liu

Targeted nanocarrier can selectively deliver anti-tumor drugs to cancer sites improving drug efficiency. Accordingly, a targeted nanocarrier (MSN-FA) was synthesized based on folic acid (FA) modified mesoporous silica nanoparticles (MSNs). These loaded with 10-hydroxycamptothecin (HCPT) to obtain the nano-drug MSN-FA@HCPT. These nanocarriers were characterized by transmission electron microscopy (TEM), zeta potential, ultraviolet-visible spectroscopy (UV-Vis), fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). Notably, the nanocarriers were nearly spherical before and after loading HCPT and exhibited good dispersibility. Also, folate receptor (FR) over-expressing HeLa cells and FR deficient HepG2 cells were used to evaluate in vitro cellular uptake and cytotoxicity of MSN-FA@HCPT and MSN@HCPT. Interestingly, FA-modified nanocarriers enhanced the cytotoxicity of HCPT by improving drug targeting to tumor cells. Also, apoptotic and mitochondrial membrane potential (MMP) reducing effects of MSN-FA@HCPT were more prominent than the MSNs without FA modification. MSN-FA@HCPT can be excellent drug carriers with profound biomedical applications.


2021 ◽  
Vol 12 (6) ◽  
pp. 52-59
Author(s):  
Rajeev Sati ◽  
Monika Bisht

Holmskioldia sanguinea Retz. is a Sub-Himalayan plant that has been cultivated in the Americas, Europe, Indo-china, Asia-Pacific, and Southern Africa. It has been used traditionally to treat rheumatism and rheumatoid arthritis, dysentery, headaches, hypertension, boils, blain, ulcers, and gynaecological problems, as well as a blood purifying concoction. The botanical description of the plant, its phytochemical constituents, and its pharmacological activities are discussed, with an emphasis on antibacterial, antihepatotoxic, antifungal, anti-inflammatory, antioxidant, antimicrobial, analgesic, central nervous system depressant, diuretic, oestrogenic, anti-implantation, and anticancer properties. Most pharmacological effects are a result of plant constituents such as alkaloids, terpenoids, tannins, flavonoids, glycosides and phenols, to name a few. Conventional wisdom should be confirmed through in vitro and in vivo studies, as well as clinical trials. Herb's anti-tumor and anti-cancer properties have generated significant interest.


2019 ◽  
Vol 19 (10) ◽  
pp. 1262-1275 ◽  
Author(s):  
Lurdes Gano ◽  
Teresa Pinheiro ◽  
António P. Matos ◽  
Francisco Tortosa ◽  
Tiago F. Jorge ◽  
...  

Background: Ruthenium complexes have been extensively investigated for their prospective value as alternatives to cisplatin. Recently, we reported the in vitro anticancer properties of a family of organometallic ruthenium( II)-cyclopentadienyl complexes and have explored their mechanism of action. Objective: The purpose of this study was to evaluate the in vivo antitumour efficacy and toxicity of one of these Ru(II) compounds, [RuCp(mTPPMSNa)(2,2′-bipy)][CF3SO2] (TM85) which displayed an interesting spectrum of activity against several cancer cells. Methods: Studies to assess the antitumour activity and toxicity were performed in a metastatic prostate (PC3) mice model using ICP-MS, nuclear microscopy, elemental analysis and Transmission Electron Microscopy (TEM). Results: TM85 showed low systemic toxicity but no significant tumour reduction, when administered at tolerated dose (20mg/kg) over 10 days. Ru was mainly retained in the liver and less in kidneys, with low accumulation in tumour. Increased bilirubin levels, anomalous Ca and Fe concentrations in liver and mitochondria alterations were indicative of liver injury. The hepatotoxicity observed was less severe than that of cisplatin and no nephrotoxicity was found. Conclusion: Under the experimental conditions of this study, TM85 is less toxic than cisplatin, induces similar tumour reduction and avoids the formation of metastatic foci. No renal toxicity was observed by the analysis of creatinine levels and the effective renal plasma flow by 99mTc-MAG3 clearance. Hence, it can be considered a valuable compound for further studies in the field of Ru-based anticancer drugs.


2019 ◽  
Vol 11 (11) ◽  
pp. 1115-1124
Author(s):  
Neeraj Sethi ◽  
Prashant Bhardwaj ◽  
Sandeep Kumar ◽  
Neeraj Dilbaghi

Therapeutic approaches used to manage cancer, are often associated with drug tolerance or multidrug resistance. The anticancer activity exhibited by plant secondary metabolites can be effectively enhanced by formulating them at nanometric scale. Ursolic acid (UA) is a pentacyclic triterpenoid that reduces cancer proliferation by interfering cell growth regulation. Tamoxifen (TAM) is an adjuvant molecule employed for hormonal therapy of cancer especially breast cancer. To improve the bioavailability and synergism, UA and TAM loaded Dammar gum nanoparticles (UTDNPs) were prepared in current study by employing oil in oil (O/O) emulsion solvent evaporation method. Zeta potential value of UTDNPs was found to be +23 mV demonstrating relative stability of nanoformulation. The percentage encapsulation efficiency value was found to be 72.5% for UA and 76.6% for TAM. The UTDNPs posses particle size in the range of 45–55 nm as revealed by transmission electron microscopy. The UTDNPs showed sustained release and their anti-oxidant and anti-cancer potential was much more pronounced than free UA and TAM particles alone. The in vitro studies demonstrated that UA and TAM encapsulated in dammar gum inhibited growth of A-549, MCF-7, and Hela cell lines more effectively than UA and TAM alone which proved their robust anticancer potential.


2020 ◽  
Vol 16 (11) ◽  
pp. 843-848
Author(s):  
Manikkam Rajalakshmi ◽  

Identification of the toxicity of compounds is more crucial before entering clinical trials. Awareness of physiochemical properties, possible targets and side effects has become a major public health issue to reduce risks. Experimental determination of analyzing the physiochemical properties of a drug, their interaction with specific receptors and identifying their side-effects remain challenging is time consuming and costly. We describe a manually compiled database named DaiCee database, which contains 2100 anticancer drugs with information on their physiochemical properties, targets of action and side effects. It includes both synthetic and herbal anti-cancer compounds. It allows the search for SMILES notation, Lipinski’s and ADME/T properties, targets and side effect profiles of the drugs. This helps to identify drugs with effective anticancer properties, their toxic nature, drug-likeness for in-vitro and in-vivo experiments. It also used for comparative analysis and screening of effective anticancer drugs using available data for compounds in the database. The database will be updated regularly to provide the users with latest information. The database is available at the URL http://www.hccbif.org/usersearch.php


2020 ◽  
Author(s):  
Simone Pisano ◽  
Xiong Wang ◽  
Yanzhen Hu ◽  
Le He ◽  
Deyarina Gonzalez ◽  
...  

Abstract Background. Amphiphilic block copolymers used as nanomicelle drug carriers can effectively overcome poor drug solubility and specificity issues. Hence, these platforms have a broad applicability in cancer treatment. In this study, Pluronic F127 was used to fabricate nanomicelles containing the histone deacetylase inhibitor SAHA, which has an epigenetic-driven anti-cancer effect in several tumor types. SAHA loaded nanomicelles were prepared using a thin-film drying method and characterized for size, surface charge, drug content and drug release properties. Loaded particles were tested for in vitro activity and their effect on cell-cycle and markers of metastasis. Results. Following detailed particle characterization, cell proliferation experiments demonstrated that SAHA loaded nanomicelles more effectively inhibited the growth of HeLa and MCF-7 cell lines compared with free drug formulations. The 30nm SAHA containing nanoparticles were able to release up to 100% of the encapsulated drug over a 72h time window. Moreover, gene and protein expression analyses suggested that this effect was achieved through the regulation of p21 and p53 expression. SAHA was also shown to upregulate E-cadherin expression, potentially influencing tumor migration and metastasis.Conclusions. This study highlights the opportunity to exploit pluronic-based nanomicelles for the delivery of compounds that regulate epigenetic processes, thus inhibiting cancer development and progression.


2018 ◽  
Vol 19 (10) ◽  
pp. 3167 ◽  
Author(s):  
Richard Lobb ◽  
Gregory Jacobson ◽  
Ray Cursons ◽  
Michael Jameson

Selenium, a trace element with anticancer properties, can reduce harmful toxicities of chemotherapy and radiotherapy without compromising efficacy. However, the dose-response relationship in normal versus malignant human cells is unclear. We evaluated how methylseleninic acid (MSA) modulates the toxicity and efficacy of chemotherapy and radiation on malignant and non-malignant human mononuclear blood cells in vitro. We specifically investigated its effects on endoplasmic reticulum stress induction, intracellular glutathione concentration, DNA damage and viability of peripheral blood mononuclear cells and THP1 monocytic leukaemia cells in response to radiation, cytosine arabinoside or doxorubicin chemotherapy. MSA, at lower concentrations, induced protective responses in normal cells but cytotoxic effects in malignant cells, alone and in conjunction with chemotherapy or radiation. However, in normal cells higher concentrations of MSA were directly toxic and increased the cytotoxicity of radiation but not chemotherapy. In malignant cells higher MSA concentrations were generally more effective in combination with cancer treatments. Thus, optimal MSA concentrations differed between normal and malignant cells and treatments. This work supports clinical reports that selenium can significantly reduce dose-limiting toxicities of anticancer therapies and potentially improve efficacy of anticancer treatments. The optimal selenium compound and dose is not yet determined.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 446 ◽  
Author(s):  
Sanele Mngadi ◽  
Seipati Mokhosi ◽  
Moganavelli Singh ◽  
Wendy Mdlalose

Magnetic nanoparticles (MNPs) have been widely investigated as a strategy to improve the delivery efficiency of therapeutic and diagnostic agents. Substituted iron oxides or ferrite nanoparticles (NPs) such as CoFe2O4 represent an interesting and novel class of MNPs, although they are under-researched in the field of biomedicine. In this study, chitosan-functionalized Mg0.5Co0.5Fe2O4 NPs were loaded with the anti-cancer 5-fluorouracil (5-FU) drug to yield CS-Mg0.5Co0.5Fe2O4-5FU. Transmission electron microscopy (TEM), Fourier Transform infra-red (FTIR) spectroscopy and nanoparticle tracking analysis (NTA) were employed to determine the physiochemical properties of the NPs. Physico-chemical characterizations confirmed spherical NPs with particle sizes of approximately 20.39 nm. Improved colloidal stability was observed, as determined by a zeta potential of approximately −20 mV for the drug-loaded CS-Mg0.5Co0.5Fe2O4 NPs. Drug encapsulation efficiencies of >60% were attained, showing a pH-dependent release of 5-FU. Cell viabilities investigated using the 3-[(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) and sulforodhamine B (SRB) assays in human embryonic kidney (HEK293), human breast adenocarcinoma (MCF-7) and human cervical cancer (HeLa) cells showed that these drug-loaded NPs exhibited more targeted tumor-specific cytotoxicities compared to free drugs. CS-Mg0.5Co0.5Fe2O4-5-FU NPs displayed significant targeted delivery potential to the investigated cancer cell lines. Conclusively, these results suggest that the CS-Mg0.5Co0.5Fe2O4-5-FU NPs are promising therapeutic delivery systems in anti-cancer treatment.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Kyriakos Sklias ◽  
João Santos Sousa ◽  
Pierre-Marie Girard

(1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.


Sign in / Sign up

Export Citation Format

Share Document