scholarly journals ExoCAS-2: Rapid and Pure Isolation of Exosomes by Anionic Exchange Using Magnetic Beads

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Hyunsung Kim ◽  
Sehyun Shin

Extracellular vesicles (EVs) are considered essential biomarkers in liquid biopsies. Despite intensive efforts aimed at employing EVs in a clinical setting, workable approaches are currently limited owing to the fact that EV-isolation technologies are still in a nascent stage. This study introduces a magnetic bead-based ion exchange platform for isolating EVs called ExoCAS-2 (exosome clustering and scattering). Owing to their negative charge, exosomes can easily adhere to magnetic beads coated with a polycationic polymer. Owing to the features of magnetic beads, exosomes can be easily processed via washing and elution steps and isolated with high purity and yield within 40 min. The present results confirmed the isolation of exosomes through analyses of size distribution, morphology, surface and internal protein markers, and exosomal RNA. Compared with the commercially available methods, the proposed method showed superior performance in terms of key aspects, including operation time, purity, and recovery rate. This highlights the potential of this magnetic bead-based ion exchange platform for isolating exosomes present in blood plasma.

Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


2013 ◽  
Vol 753-755 ◽  
pp. 1571-1575
Author(s):  
Zhi Hua Liu ◽  
Yu Feng Huang ◽  
Jian Peng Li ◽  
Xin Wei Xu

Magnetic bead droplet's non-contacted manipulation can be realized in Electromagnetic MEMS, but how to achieve magnetic beads manipulation is the major problem. A new method of multi-layered flat coils coupled with permanent magnet was proposed. Firstly, the theory of magnetic bead manipulation was analyzed and the main factors affected the magnetic beads manipulation was identified; then the magnetic field of multi-layered flat coils and Stokes viscous resistance of magnetic beads were analyzed and simulated quantificationally; finally the magnetic bead capture area was got under different flow velocity. Consequently the feasibility and correctness of this method was verified.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Rujie Xu ◽  
Zhixiang Yin ◽  
Zhen Tang ◽  
Jing Yang ◽  
Jianzhong Cui ◽  
...  

Magnetic beads and magnetic Raman technology substrates have good magnetic response ability and surface-enhanced Raman technology (SERS) activity. Therefore, magnetic beads exhibit high sensitivity in SERS detection. In this paper, DNA cycle hybridization and magnetic bead models are combined to solve 0-1 integer programming problems. First, the model maps the variables to DNA strands with hairpin structures and weights them by the number of hairpin DNA strands. This result can be displayed by the specific binding of streptavidin and biotin. Second, the constraint condition of the 0-1 integer programming problem can be accomplished by detecting the signal intensity of the biological barcode to find the optimal solution. Finally, this model can be used to solve the general 0-1 integer programming problem and has more extensive applications than the previous DNA computing model.


The Analyst ◽  
2016 ◽  
Vol 141 (19) ◽  
pp. 5637-5645 ◽  
Author(s):  
Jacquelyn A. DuVall ◽  
Scott T. Cabaniss ◽  
Morgan L. Angotti ◽  
John H. Moore ◽  
Mayuresh Abhyankar ◽  
...  

A centrifugally-driven polyester microdevice for sequence-specific detection ofClostridium difficileusing magnetic beads, isothermal amplification, and cell phone image analysis.


2013 ◽  
Vol 59 (1) ◽  
pp. 315-324 ◽  
Author(s):  
Danni Li ◽  
Hanching Chiu ◽  
Jing Chen ◽  
Hui Zhang ◽  
Daniel W Chan

BACKGROUND Well-annotated clinical samples are valuable resources for biomarker discovery and validation. Multiplex and integrated methods that simultaneously measure multiple analytes and generate integrated information about these analytes from a single measurement are desirable because these methods help conserve precious samples. We developed a magnetic bead–based system for multiplex and integrated glycoprotein quantification by immunoassays and glycan detection by lectin immunosorbent assays (LISAs). METHODS Magnetic beads coupled with antibodies were used for capturing proteins of interest. Biotinylated antibodies in combination with streptavidin-labeled phycoerythrin were used for protein quantification. In the LISAs, biotinylated detection antibodies were replaced by biotinylated lectins for glycan detection. RESULTS Using tissue inhibitor of metallopeptidase 1 (TIMP-1), tissue plasminogen activator, membrane metallo-endopeptidase, and dipeptidyl peptidase-IV (DPP-4) as models, we found that the multiplex integrated system was comparable to single immunoassays in protein quantification and LISAs in glycan detection. The merits of this system were demonstrated when applied to well-annotated prostate cancer tissues for validation of biomarkers in aggressive prostate cancer. Because of the system's multiplex ability, we used only 300 ng of tissue protein for the integrated detection of glycans in these proteins. Fucosylated TIMP-1 and DPP-4 offered improved performance over the proteins in distinguishing aggressive and nonaggressive prostate cancer. CONCLUSIONS The multiplex and integrated system conserves samples and is a useful tool for validation of glycoproteins and their glycoforms as biomarkers.


2007 ◽  
Vol 1032 ◽  
Author(s):  
Jeong Dae Suh ◽  
Myung Ae Chung

AbstractWe have demonstrated the use of highly sensitive spin valve sensors for the detection of micron magnetic beads. By using a ring type, cross type, and meander line type sensors, we were able to detect the presence of 2.8 μm size magnetic beads in real time by direct measurement of magnetic dipole fields from magnetic beads. The sensitivity of the ring, cross and meander line sensors were obtained about 50 μV/Oe, 7 μV/Oe, 30 μV/Oe and sensor output signals of 50 μV , 30 μV, 90 μV were obtained in an external applied field of 10 Oe and 1 mA sense current. Our results shows that ring, cross, and meander line shape spin valve sensors are very promising candidates for the detection of biomolecules with magnetic labels.


Author(s):  
Hesaam Esfandyarpour ◽  
Ronald W. Davis

In this paper we present a novel microfluidic platform for DNA sequencing-by-synthesis methods (e.g. pyrosequencing). The proposed platform is based on the valve-controllable PDMS channel technology with DNA-coated magnetic beads. The encapsulation of the reaction of DNA polymerization in picoliter-sized wells provides for excellent isolation and control for detection. This separation prevents cross-talk amongst neighbor reactors which is one of the most limitations for higher integration of the current technologies. Through application of an external magnetic field the beads can be allocated with better accuracy. In addition this property can help mixing for the reaction. The proposed system is useful for a number of other bio-species detection and sorting templates. This paper illustrates the design and experimental results of a primary template as well as different advantages and potential applications of the Gate-Controlled Magnetic Bead (GCMB) platform in the world of DNA sequencing and genetics.


Author(s):  
P.U. Singare

Nondestructive radioanalytical technique using short lived isotopes 131I and 82Br was used as tracers to study the kinetics of iodide and bromide ion-isotopic exchange reactions. The kinetic data so obtained was used to evaluate the performance of organic base anion exchange resins Purolite NRW-6000 and Duolite A-378. It was observed that for iodide ion-isotopic exchange reaction performed at 40.0 °C using 1.000 g of ion exchange resins and 0.003 mol/L labeled iodide ion solution, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log Kd were calculated as 0.332, 0.582, 0.193 and 16.2 respectively for Purolite NRW-6000 resin, which was higher than the respective values of 0.210, 0.421, 0.088 and 14.7 as that obtained for Duolite A-378 resins. Also at a constant temperature of 40.0 °C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 74.68% to 79.48% using Purolite NRW-6000 resins and from 52.30% to 58.90% using Duolite A-378 resins. The overall results indicate superior performance of Purolite NRW-6000 resins over Duolite A-378 resins under identical operational parameters. It is expected here that the present technique can be extended further for characterization of different ion exchange resins which will further help in the selection of those reins for the specific industrial application.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3368-3368 ◽  
Author(s):  
Nithya J Jesuraj ◽  
Julie M Cole ◽  
Felipe Bedoya ◽  
Steven B Wells ◽  
Guokui Qin ◽  
...  

Abstract Introduction For chimeric antigen receptor T cell-based (CAR-T) and engineered T cell receptor (TCR) immunotherapies, T cell expansion methods and phenotype/s of transplanted T cells may heavily influence clinical outcomes. Much current focus is on the potential of defined CD4+/CD8+ T cell populations vs bulk, and on the potential superiority of CAR-T cells from naïve (TN) or central memory (TCM) versus effector memory (TEM) cells. Many commercial T cell activation and expansion methods utilize rigid magnetic beads bound to antibodies against CD3 and CD28 as substrates. These methods are often associated with high costs and licensing restrictions for clinical and commercial applications. Additionally, de-beading processes can be highly complex and inefficient, adding additional time, costs and risks. It has been shown that substrate rigidity influences T cell expansion and phenotype. We hypothesized that a novel phase-change substrate could modulate expanded T cell phenotype/s and address de-beading challenges. Methods An alginate-based phase-change hydrogel was synthesized and coated onto magnetic beads to form hydrogel-coated particles of approximately 10 µm diameter. This hydrogel, in the presence of chelating agents, rapidly dissolves, enabling removal magnetic bead removal. The coated particles were conjugated with streptavidin (SA) and bound to biotinylated antibodies against CD3 (OKT3) and CD28 (28.2) to form CD3/CD28 hydrogel particles (CD3/CD28-HP). Human CD3+ T cells from peripheral blood were seeded (Day 0) at 1x10E6 cells/mL in 24 well plates (n=3) in complete RPMI medium supplemented with IL-2. To each well, 25 µL of CD3/CD28-HP were added per 0.5x10E6 cells in a single stimulation. Media addition or change of culture vessel occurred each 2-3 days. Following expansion, chelating agent was added and magnetic beads removed. Flow cytometry was used to assess cell viability and expression of phenotypic markers including CD3, CD4, CD8, CD45RA and CCR7. ELISA was used to measure secretion of IL-2, IL-4, and IFNγ. Residual magnetic beads were counted via hemocytometer. Results CD3/CD28-HP promoted significant T cell expansion of 0.3, 1.4, 2.4, 4.8 and 6.6 population doublings (PD) by Days 2, 5, 6, 9, and 13 respectively (p<0.01-p<0.001 vs Day 0). Similarly, CD3/CD28-HP-induced expansion in a separate lab using a different T cell donor yielded 4.7 PD by Day 9 (p<0.001 vs Day 0). Phenotypic markers were assessed on Days 6 and 13. Expansion using CD3/CD28-HP led to significantly more CD8+ cells and significantly fewer CD4+ cells versus the starting population on both days (p<0.05-p<0.001). When compared to a commercially available magnetic CD3/CD28 bead product, CD3/CD28-HP produced a significantly larger CD8+ population on Days 6 (p<0.05)and 13 (p<0.001), and a smaller population of CD4+ T cells on Day 13 (p<0.01). CD3/CD28-HP-based expansion significantly increased the percentage of CD3/CD45RA expressing T cells compared with the magnetic bead-based product on Day 6 (p<0.05). Also, on Day 6, T cells expanded using CD3/CD28-HP showed increased CD8/CD45RA/CCR7 expression when compared to T cells expanded with the commercial magnetic bead product (p<0.05). Cytokine secretion was assessed on Days 6 and 13. Cells expanded using both expansion methods secreted IL-2, IL-4, and IFNγ, with no significant differences in secretory function observed between expansion methods. Following de-beading of expanded cells, cell recovery was 96% for the CD3/CD28-HP-expanded cells and 93% for cells expanded using commercial magnetic bead-based expansion product. Additionally, in de-beaded cells, fewer residual magnetic particles were present in the CD3/CD28-HP-expanded population than in cells expanded via the commercial magnetic bead-based expansion product. Conclusions These data demonstrate the utility of a novel phase-change hydrogel system to efficiently induce T cell proliferation, promote expansion of functional T cells expressing markers associated with CD8+, TN and TCM phenotypes, and to separate expanded cells efficiently from magnetic beads. In future studies, we will determine if T cells expanded using this method show increased stemness and persistence in in vivo models, and further explore the possibilities of this novel system for rapid expansion and recovery of specific T cell subtypes. Disclosures Jesuraj: Quad Technologies: Employment, Other: stock options. Cole:Quad Technologies: Employment, Other: Stock Options. Wells:Quad Technologies: Employment, Other: Stock Options. Qin:Quad Technologies: Employment, Other: Stock options. Kevlahan:Quad Technologies: Employment, Equity Ownership. Maus:Novartis: Patents & Royalties: related to CTL019, Research Funding. Ball:Quad Technologies: Employment, Other: Stock Options.


Sign in / Sign up

Export Citation Format

Share Document