scholarly journals The Enigmatic HOX Genes: Can We Crack Their Code?

Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Zhifei Luo ◽  
Suhn Rhie ◽  
Peggy Farnham

Homeobox genes (HOX) are a large family of transcription factors that direct the formation of many body structures during early embryonic development. There are 39 genes in the subgroup of homeobox genes that constitute the human HOX gene family. Correct embryonic development of flies and vertebrates is, in part, mediated by the unique and highly regulated expression pattern of the HOX genes. Disruptions in these fine-tuned regulatory mechanisms can lead to developmental problems and to human diseases such as cancer. Unfortunately, the molecular mechanisms of action of the HOX family of transcription factors are severely under-studied, likely due to idiosyncratic details of their structure, expression, and function. We suggest that a concerted and collaborative effort to identify interacting protein partners, produce genome-wide binding profiles, and develop HOX network inhibitors in a variety of human cell types will lead to a deeper understanding of human development and disease. Within, we review the technological challenges and possible approaches needed to achieve this goal.

2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


Author(s):  
Perotti M F ◽  
Arce A L ◽  
R L Chan

Abstract Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors (TFs) and hormones that are crucial players regulating root plasticity. Multiple TF families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) TFs in root development. This family is divided into four subfamilies (I to IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip TFs in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several ones from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.


2020 ◽  
Vol 21 (24) ◽  
pp. 9514
Author(s):  
Genevieve Saw ◽  
Feng Ru Tang

The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2371-2380 ◽  
Author(s):  
Benjamin T. Kile ◽  
Athanasia D. Panopoulos ◽  
Roslynn A. Stirzaker ◽  
Douglas F. Hacking ◽  
Lubna H. Tahtamouni ◽  
...  

A pivotal mediator of actin dynamics is the protein cofilin, which promotes filament severing and depolymerization, facilitating the breakdown of existing filaments, and the enhancement of filament growth from newly created barbed ends. It does so in concert with actin interacting protein 1 (Aip1), which serves to accelerate cofilin's activity. While progress has been made in understanding its biochemical functions, the physiologic processes the cofilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined. We have generated an allelic series for WD40 repeat protein 1 (Wdr1), the mammalian homolog of Aip1, and report that reductions in Wdr1 function produce a dramatic phenotype gradient. While severe loss of function at the Wdr1 locus causes embryonic lethality, macrothrombocytopenia and autoinflammatory disease develop in mice carrying hypomorphic alleles. Macrothrombocytopenia is the result of megakaryocyte maturation defects, which lead to a failure of normal platelet shedding. Autoinflammatory disease, which is bone marrow–derived yet nonlymphoid in origin, is characterized by a massive infiltration of neutrophils into inflammatory lesions. Cytoskeletal responses are impaired in Wdr1 mutant neutrophils. These studies establish an essential requirement for Wdr1 in megakaryocytes and neutrophils, indicating that cofilin-mediated actin dynamics are critically important to the development and function of both cell types.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-9-SCI-9
Author(s):  
Peter E. Newburger ◽  
Sherman M. Weissman

Abstract Abstract SCI-9 During hematopoiesis, determination of lineage and maturation to functional leukocytes depend upon cytokine-mediated changes in the transcriptional programs of progenitor and precursor cells. The classic binary branching tree of hematopoiesis now appears to be a more subtle series of gradual changes in differentiation probabilities, with competitive promotion and inhibition of lineage pathways by regulatory transcription factors such as (among others) PU.1, C/EBPα, GFI-1, EGR1/2, and NAB2 for the myeloid lineages and RUNX1, Notch-1, E2A, GATA-3, EBF, and PAX5 for lymphoid cell development. In addition, the recent discovery of regulatory non-coding RNAs (ncRNAs) has revealed another, important layer of control of hematopoiesis. The best studied members of this diverse group are the microRNAs, which often down-regulate multiple target transcripts. miRNAs involved in the regulation of myeloid development and function include miR-155, miR-223, and miR-17-19 cluster members. In addition, miR-9, miR-146a, miR-155, and miR-181a regulate the responses of immunocytes of the innate and acquired immune systems. Most recently, increasing numbers of long ncRNAs have been identified and found to regulate expression of other genes, both in cis and in trans. EGO (eosinophil granule ontogeny), a 500 base pair spliced, polyadenylated transcript regulates eosinophil granule protein gene expression. HOTAIRM1 (Hox antisense intergenic RNA, myeloid-1), a ∼500 base pair spliced polyadenylated ncRNA, affects neutrophil expression of both contiguous and distant HoxA cluster genes, as well as transcripts for CD18 integrin. Thus the control of white cell development depends not simply on a small number of key transcription factors, but rather on a complex network of interacting protein and ncRNA regulators of the transcriptional and translational programs of cell differentiation and function. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 85 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Josette M. Douville ◽  
Jeffrey T. Wigle

During embryonic development, the cardiovascular system first forms and then gives rise to the lymphatic vascular system. Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. These genes all encode proteins that are transcription factors that contain a well conserved DNA binding motif, the homeodomain. It is through the homeodomain that these transcription factors bind to the promoters of target genes and regulate their expression. Although many homeodomain proteins have been found to be expressed within the vascular systems, little is known about their downstream target genes. This review highlights recent advances made in the identification of novel genes downstream of the homeodomain proteins that are necessary for regulating vascular cellular processes such as proliferation, migration, and endothelial tube formation. Factors known to regulate the functions of vascular cells via modulating the expression of homeobox genes will be discussed. We will also review current methods used to identify and characterize downstream target genes of homeodomain proteins.


2020 ◽  
Author(s):  
Shiri Kult ◽  
Tsviya Olender ◽  
Marco Osterwalder ◽  
Sharon Krief ◽  
Ronnie Blecher-Gonen ◽  
...  

AbstractThe connection between different tissues is vital for the development and function of any organs and systems. In the musculoskeletal system, the attachment of elastic tendons to stiff bones poses a mechanical challenge that is solved by the formation of a transitional tissue, which allows the transfer of muscle forces to the skeleton without tearing. Here, we show that tendon-to-bone attachment cells are bi-fated, activating a mixture of chondrocyte and tenocyte transcriptomes, which is regulated by sharing regulatory elements with these cells and by Krüppel-like factors transcription factors (KLF).To uncover the molecular identity of attachment cells, we first applied high-throughput RNA sequencing to murine humeral attachment cells. The results, which were validated by in situ hybridization and single-molecule in situ hybridization, reveal that attachment cells express hundreds of chondrogenic and tenogenic genes. In search for the underlying mechanism allowing these cells to express these genes, we performed ATAC sequencing and found that attachment cells share a significant fraction of accessible intergenic chromatin areas with either tenocytes or chondrocytes. Epigenomic analysis further revealed transcriptional enhancer signatures for the majority of these regions. We then examined a subset of these regions using transgenic mouse enhancer reporter. Results verified the shared activity of some of these enhancers, supporting the possibility that the transcriptome of attachment cells is regulated by enhancers with shared activities in tenocytes or chondrocytes. Finally, integrative chromatin and motif analyses, as well as the transcriptome data, indicated that KLFs are regulators of attachment cells. Indeed, blocking the expression of Klf2 and Klf4 in the developing limb mesenchyme led to abnormal differentiation of attachment cells, establishing these factors as key regulators of the fate of these cells.In summary, our findings show how the molecular identity of bi-fated attachment cells enables the formation of the unique transitional tissue that connect tendon to bone. More broadly, we show how mixing the transcriptomes of two cell types through shared enhancers and a dedicated set of transcription factors can lead to the formation of a new cell fate that connects them.


2007 ◽  
Vol 87 (1) ◽  
pp. 219-244 ◽  
Author(s):  
Yutaka Maeda ◽  
Vrushank Davé ◽  
Jeffrey A. Whitsett

The vertebrate lung consists of multiple cell types that are derived primarily from endodermal and mesodermal compartments of the early embryo. The process of pulmonary organogenesis requires the generation of precise signaling centers that are linked to transcriptional programs that, in turn, regulate cell numbers, differentiation, and behavior, as branching morphogenesis and alveolarization proceed. This review summarizes knowledge regarding the expression and proposed roles of transcription factors influencing lung formation and function with particular focus on knowledge derived from the study of the mouse. A group of transcription factors active in the endodermally derived cells of the developing lung tubules, including thyroid transcription factor-1 (TTF-1), β-catenin, Forkhead orthologs (FOX), GATA, SOX, and ETS family members are required for normal lung morphogenesis and function. In contrast, a group of distinct proteins, including FOXF1, POD1, GLI, and HOX family members, play important roles in the developing lung mesenchyme, from which pulmonary vessels and bronchial smooth muscle develop. Lung formation is dependent on reciprocal signaling among cells of both endodermal and mesenchymal compartments that instruct transcriptional processes mediating lung formation and adaptation to breathing after birth.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Glaser ◽  
A.W Heumueller ◽  
M Klangwart ◽  
A Wiederer ◽  
D John ◽  
...  

Abstract Background Circular RNAs (circRNAs) are generated by back-splicing. They are known to be robustly expressed in a variety of mammalian cell types and organism and have been reported to influence cell biology by acting e.g. as microRNA sponges or regulating host gene expression. Recently, our group reported functionally relevant circRNA expression in endothelial cells. Despite their important role in the cardiovascular system, the expression and function of circRNAs in pericytes is not well studied. Pericytes are perivascular mural cells, important for vessel maturation and endothelial barrier function. Their recruitment towards endothelial cells is mainly meditated by platelet-derived growth factor (PDGF) signaling. However, a more precise understanding of the regulation of pericyte differentiation and survival is necessary. Objective Here, we analyse circRNA expression in pericytes and demonstrate biological relevance of the hypoxia regulated circular RNA PLOD2 (cPLOD2). Methods and results Using RNA Sequencing in ribosomal depleted RNA we characterized the expression of circRNAs in human pericytes under normoxic and hypoxic (1% O2, 48h) conditions. We identified several circular RNAs being regulated upon hypoxia. The identified circular RNAs demonstrated resistance towards RNase-R digestion and lacking of poly-adenylation. Some of them were found to be localized and in the cytosol, whereas others also occur in the nucleus of the cells. Especially cPLOD2 raised our attention since it is significantly upregulated and robustly expressed upon hypoxia. Silencing cPLOD2 by siRNA resulted in significant de-differentiation of pericytes that went along with a loss of cell viability. Mechanistically, transcription factor screening assays revealed that silencing of cPLOD2 enhances the activity of the transcription factors ELK1/SRF, which have been documented to result in de-differentiation of smooth muscle cells. Conclusion Here we characterize the expression pattern of circRNAs in human primary pericytes. Among others, cPLOD2 significantly regulates pericyte function. Our results indicate hypoxia as a major regulator of circRNA expression in pericytes and show that circRNAs are capable of regulating pericyte function by modulating activity of transcription factors. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): Deutsche Forschungsgesellschaft (DFG) - SFB834; Deutsche Gesellschaft für Herz-Kreislaufforschung (DZHK)


Endocrinology ◽  
2021 ◽  
Author(s):  
Caitlin E Stallings ◽  
Jyoti Kapali ◽  
Brian W Evans ◽  
Stacey R McGee ◽  
Buffy S Ellsworth

Abstract Understanding the molecular mechanisms underlying pituitary organogenesis and function is essential for improving therapeutics and molecular diagnoses for hypopituitarism. We previously found that deletion of the forkhead factor, Foxo1, in the pituitary gland early in development delays somatotrope differentiation. While these mice grow normally, they have reduced growth hormone expression and free serum IGF1 levels, suggesting a defect in somatotrope function. FOXO factors show functional redundancy in other tissues, so we deleted both Foxo1 and its closely related family member, Foxo3, from the primordial pituitary. We find that this results in a significant reduction in growth. Consistent with this, male and female mice in which both genes have been deleted in the pituitary gland (dKO) exhibit reduced pituitary growth hormone expression and serum IGF1 levels. Expression of the somatotrope differentiation factor, Neurod4, is reduced in these mice. This suggests a mechanism underlying proper somatotrope function is the regulation of Neurod4 expression by FOXO factors. Additionally, dKO mice have reduced Lhb expression and females also have reduced Fshb and Prl expression. These studies reveal FOXO transcription factors as important regulators of pituitary gland function.


Sign in / Sign up

Export Citation Format

Share Document