scholarly journals Interaction between GRP78 and IGFBP-3 Affects Tumourigenesis and Prognosis in Breast Cancer Patients

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3821
Author(s):  
Hanna A. Zielinska ◽  
Carl S. Daly ◽  
Ahmad Alghamdi ◽  
Amit Bahl ◽  
Muhammed Sohail ◽  
...  

Insulin-like growth factor binding protein 3 (IGFBP-3) plays a key role in breast cancer progression and was recently shown to bind to the chaperone protein glucose-regulated protein 78 (GRP78); however, the clinical significance of this association remains poorly investigated. Here we report a direct correlation between the expression of GRP78 and IGFBP-3 in breast cancer cell lines and tumour sections. Kaplan–Meier survival plots revealed that patients with low GRP78 expression that are positive for IGFBP-3 had poorer survival rates than those with low IGFBP-3 levels, and we observed a similar trend in the publicly available METABRIC gene expression database. With breast cancer cells, in vitro IGFBP-3 enhanced induced apoptosis, however when GRP78 expression was silenced the actions of IGFBP-3 were switched from increasing to inhibiting ceramide (C2)-induced cell death and promoted cell invasion. Using immunofluorescence and cell surface biotinylation, we showed that knock-down of GRP78 negated the entry of IGFBP-3 into the cells. Together, our clinical and experimental results suggest that loss of GRP78 reduces IGFBP-3 entry into cells switching its actions to promote tumorigenesis and predicts a poor prognosis in breast cancer patients.

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Kimberly R. Jordan ◽  
Jessica K. Hall ◽  
Troy Schedin ◽  
Michelle Borakove ◽  
Jenny J. Xian ◽  
...  

Abstract Background Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women’s breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. Methods In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women’s breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. Results We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. Conclusions Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jiahui Mao ◽  
Lingxia Wang ◽  
Junying Wu ◽  
Yichun Wang ◽  
Huiyan Wen ◽  
...  

miRNAs play a crucial part in multiple biological processes of cell proliferation, migration, apoptosis, and chemoresistance. In cancer, miRNAs can be divided into oncogenes or tumor suppressors on the basis of their functions in the carcinogenic process. The purpose of this study was to explore the roles and clinical diagnostic value of miR-370-3p in breast cancer. Our results demonstrated that miR-370-3p significantly promoted proliferation, metastasis, and stemness of breast cancer in vitro and in vivo. In particular, clinical data revealed that high expression of serum miR-370-3p and exosomal miR-370-3p from breast cancer patients was remarkably correlated with lymphatic metastasis and tumor node metastasis (TNM) stages. Mechanistically, miR-370-3p inhibited FBLN5 expression and activated the NF-κB signaling pathway to promote breast cancer cell proliferation, migration, and stemness. FBLN5 expression was significantly decreased in breast cancer cells and tumor tissues of breast cancer patients. Our research identified that miR-370-3p promoted breast cancer progression by inhibiting FBLN5 expression and activating the NF-κB signaling pathway. Serum exosomal miR-370-3p would provide a potential biomarker for the diagnosis of breast cancer.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13021-13021 ◽  
Author(s):  
P. Scherle ◽  
X. Liu ◽  
J. Li ◽  
J. Fridman ◽  
Y. Li ◽  
...  

13021 Background: HER-2, a member of ErbB family of receptor tyrosine kinases, is an important regulator of cell proliferation and survival, and is a clinically validated target of therapeutic intervention in HER-2 positive metastatic breast cancer patients. In HER-2 overexpressing cells, the extracellular domain (ECD) is frequently cleaved, rendering the remaining transmembrane portion of HER-2 (p95) constitutively active. The presence of both serum ECD and cellular p95 protein have been linked to poor clinical outcome as well as reduced effectiveness of some therapeutic treatments, suggesting that signaling via p95 is clinically relevant and may represent an attractive target for therapeutic intervention. Methods: Through medicinal chemistry efforts, we have identified a series of potent, selective small molecule inhibitors of ADAM metalloproteases, exemplified here by INCB7839. These compounds were tested both in vitro and in vivo for inhibition of HER-2 ECD cleavage and anti-tumor activity in the HER-2 overexpressing BT-474 cell line. Inhibition of circulating HER-2 ECD levels was monitored in a phase I multiple dose escalation study in healthy volunteers. Results: We demonstrate that these inhibitors effectively blocked HER-2 cleavage in HER-2 overexpressing human breast cancer cell lines. When used in combination, INCB7839 dramatically enhanced the antiproliferative activity of suboptimal doses of the anti-HER-2 antibody, trastuzumab, in HER-2 overexpressing/shedding breast cancer cell lines, accompanied by reduced ERK and AKT phosphorylation. Consistent with these in vitro data, INCB7839 reduced serum ECD levels in tumor-bearing mice and enhanced the antitumor effect of trastuzumab in a xenograft tumor model derived from the HER-2 overexpressing BT-474 breast cancer cell line. In a phase I clinical trial, INCB7839 demonstrated a dose-dependent decrease in the circulating levels of HER-2 ECD present in healthy volunteers. Conclusions: Collectively, these findings suggest that blocking HER-2 cleavage with selective ADAM inhibitors, especially in combination with anti-HER-2 antibody therapy, may represent a novel approach for treating HER-2 overexpressing breast cancer patients. [Table: see text]


2018 ◽  
Vol 47 (5) ◽  
pp. 2126-2135 ◽  
Author(s):  
Yongchang Wei ◽  
Guohong Liu ◽  
Balu Wu ◽  
Yufen Yuan ◽  
Yunbao Pan

Background/Aims: MicroRNAs (miRNAs) regulate the expressions of cancer-related genes, and are involved in the development and progression of various human cancers. Here, we performed further analyses to determine whether let-7d is functionally linked to Jab1 in breast cancer. Methods: In situ hybridization and immunohistochemical analyses were used to determine the level of let-7d and Jab1 in breast cancer clinical specimens and its correlation with clinicopathological data. Let-7d overexpressing breast cancer cell lines combined with mouse models bearing cell-derived xenografts were used to assess the functional role of let-7d both in vitro and in vivo. Results: In this study, we found that let-7d was downregulated in breast cancer tissues, coupled with the elevations of Jab1 protein expressions, compared with paired adjacent noncancerous breast tissues. Let-7d overexpression significantly suppressed the proliferation and invasion in MCF-7 and MDA-MB-231 cells. Dual luciferase reporter assay indicated that Jab1 was the direct target of let-7d. Stepwise studies from in vitro and in vivo experiments indicated that let-7d overexpression inhibited cell growth and decreased Jab1 expressions in breast cancer cells and nude mice tumor tissues. Statistical analyses demonstrated that breast cancer patients with low levels of let-7d or high levels of Jab1 had a significant correlation with worse prognosis. Conclusion: These findings provide novel insights into molecular mechanism of let-7d and Jab1 in tumor development and progression of breast cancer, and thus let-7d/Jab1 are novel potential therapeutic targets for breast cancer patients.


2021 ◽  
Vol 11 (7) ◽  
pp. 636
Author(s):  
Hyung-Suk Kim ◽  
Kyueng-Whan Min ◽  
Dong-Hoon Kim ◽  
Byoung-Kwan Son ◽  
Mi-Jung Kwon ◽  
...  

Nuclear receptor-binding SET domain protein (NSD), a histone methyltransferase, is known to play an important role in cancer pathogenesis. The WHSC1L1 (Wolf-Hirschhorn syndrome candidate 1-like 1) gene, encoding NSD3, is highly expressed in breast cancer, but its role in the development of breast cancer is still unknown. The purpose of this study was to analyze the survival rates and immune responses of breast cancer patients with high WHSC1L1 expression and to validate the results using gradient boosting machine (GBM) in breast cancer. We investigated the clinicopathologic parameters, proportions of immune cells, pathway networks and in vitro drug responses according to WHSC1L1 expression in 456, 1500 and 776 breast cancer patients from the Hanyang University Guri Hospital, METABRIC and TCGA, respectively. High WHSC1L1 expression was associated with poor prognosis, decreased CD8+ T cells and high CD274 expression (encoding PD-L1). In the pathway networks, WHSC1L1 was indirectly linked to the regulation of the lymphocyte apoptotic process. The GBM model with WHSC1L1 showed improved prognostic performance compared with the model without WHSC1L1. We found that VX-11e, CZC24832, LY2109761, oxaliplatin and erlotinib were effective in inhibiting breast cancer cell lines with high WHSC1L1 expression. High WHSC1L1 expression could play potential roles in the progression of breast cancer and targeting WHSC1L1 could be a potential strategy for the treatment of breast cancer.


MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 58-63
Author(s):  
Batool Savari ◽  
Sohrab Boozarpour ◽  
Maryam Tahmasebi-Birgani ◽  
Hossein Sabouri ◽  
Seyed Mohammad Hosseini

Background: Breast cancer is the most common cancer diagnosed in women worldwide. So it seems that there's a good chance of recovery if it's detected in its early stages even before the appearances of symptoms. Recent studies have shown that miRNAs play an important role during cancer progression. These transcripts can be tracked in liquid samples to reveal if cancer exists, for earlier treatment. MicroRNA-21 (miR-21) has been shown to be a key regulator of carcinogenesis, and breast tumor is no exception. Objective: The present study was aimed to track the miR-21 expression level in serum of the breast cancer patients in comparison with that of normal counterparts. Methods: Comparative real-time polymerase chain reaction was applied to determine the levels of expression of miR-21 in the serum samples of 57 participants from which, 42 were the patients with breast cancer including pre-surgery patients (n = 30) and post-surgery patients (n = 12), and the others were the healthy controls (n = 15). Results: MiR-21 was significantly over expressed in the serum of breast cancer patients as compared with healthy controls (P = 0.002). A significant decrease was also observed following tumor resection (P < 0.0001). Moreover, it was found that miR-21 overexpression level was significantly associated with tumor grade (P = 0.004). Conclusion: These findings suggest that miR-21 has the potential to be used as a novel breast cancer biomarker for early detection and prognosis, although further experiments are needed.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2021 ◽  
Vol 22 (10) ◽  
pp. 5382
Author(s):  
Pei-Yi Chu ◽  
Hsing-Ju Wu ◽  
Shin-Mae Wang ◽  
Po-Ming Chen ◽  
Feng-Yao Tang ◽  
...  

(1) Background: methionine cycle is not only essential for cancer cell proliferation but is also critical for metabolic reprogramming, a cancer hallmark. Hepatic and extrahepatic tissues methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A that catalyze the formation of S-adenosylmethionine (SAM), the principal biological methyl donor. Glycine N-methyltransferase (GNMT) further utilizes SAM for sarcosine formation, thus it regulates the ratio of SAM:S-adenosylhomocysteine (SAH). (2) Methods: by analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that breast cancer patients with higher MAT2A had worse survival rate (p = 0.0057). Protein expression pattern of MAT1AA, MAT2A and GNMT were investigated in the tissue microarray in our own cohort (n = 252) by immunohistochemistry. MAT2A C/N expression ratio and cell invasion activity were further investigated in a panel of breast cancer cell lines. (3) Results: GNMT and MAT1A were detected in the cytoplasm, whereas MAT2A showed both cytoplasmic and nuclear immunoreactivity. Neither GNMT nor MAT1A protein expression was associated with patient survival rate in our cohort. Kaplan–Meier survival curves showed that a higher cytoplasmic/nuclear (C/N) MAT2A protein expression ratio correlated with poor overall survival (5 year survival rate: 93.7% vs. 83.3%, C/N ratio ≥ 1.0 vs. C/N ratio < 1.0, log-rank p = 0.004). Accordingly, a MAT2A C/N expression ratio ≥ 1.0 was determined as an independent risk factor by Cox regression analysis (hazard ratio = 2.771, p = 0.018, n = 252). In vitro studies found that breast cancer cell lines with a higher MAT2A C/N ratio were more invasive. (4) Conclusions: the subcellular localization of MAT2A may affect its functions, and elevated MAT2A C/N ratio in breast cancer cells is associated with increased invasiveness. MAT2A C/N expression ratio determined by IHC staining could serve as a novel independent prognostic marker for breast cancer.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 996
Author(s):  
Ana Carolina Pavanelli ◽  
Flavia Rotea Mangone ◽  
Luciana R. C. Barros ◽  
Juliana Machado-Rugolo ◽  
Vera L. Capelozzi ◽  
...  

Abnormal long non-coding RNAs (lncRNAs) expression has been documented to have oncogene or tumor suppressor functions in the development and progression of cancer, emerging as promising independent biomarkers for molecular cancer stratification and patients’ prognosis. Examining the relationship between lncRNAs and the survival rates in malignancies creates new scenarios for precision medicine and targeted therapy. Breast cancer (BRCA) is a heterogeneous malignancy. Despite advances in its molecular classification, there are still gaps to explain in its multifaceted presentations and a substantial lack of biomarkers that can better predict patients’ prognosis in response to different therapeutic strategies. Here, we performed a re-analysis of gene expression data generated using cDNA microarrays in a previous study of our group, aiming to identify differentially expressed lncRNAs (DELncRNAs) with a potential predictive value for response to treatment with taxanes in breast cancer patients. Results revealed 157 DELncRNAs (90 up- and 67 down-regulated). We validated these new biomarkers as having prognostic and predictive value for breast cancer using in silico analysis in public databases. Data from TCGA showed that compared to normal tissue, MIAT was up-regulated, while KCNQ1OT1, LOC100270804, and FLJ10038 were down-regulated in breast tumor tissues. KCNQ1OT1, LOC100270804, and FLJ10038 median levels were found to be significantly higher in the luminal subtype. The ROC plotter platform results showed that reduced expression of these three DElncRNAs was associated with breast cancer patients who did not respond to taxane treatment. Kaplan–Meier survival analysis revealed that a lower expression of the selected lncRNAs was significantly associated with worse relapse-free survival (RFS) in breast cancer patients. Further validation of the expression of these DELncRNAs might be helpful to better tailor breast cancer prognosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document