scholarly journals The Role of Cancer-Associated Fibroblasts in Tumor Progression

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1399
Author(s):  
Rushikesh S. Joshi ◽  
Samanvi S. Kanugula ◽  
Sweta Sudhir ◽  
Matheus P. Pereira ◽  
Saket Jain ◽  
...  

In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.

Author(s):  
Victor Delprat ◽  
Carine Michiels

AbstractCancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3108
Author(s):  
Kévin Louault ◽  
Rong-Rong Li ◽  
Yves A. DeClerck

The tumor microenvironment (TME) plays a critical role in tumor progression. Among its multiple components are cancer-associated fibroblasts (CAFs) that are the main suppliers of extracellular matrix molecules and important contributors to inflammation. As a source of growth factors, cytokines, chemokines and other regulatory molecules, they participate in cancer progression, metastasis, angiogenesis, immune cell reprogramming and therapeutic resistance. Nevertheless, their role is not fully understood, and is sometimes controversial due to their heterogeneity. CAFs are heterogeneous in their origin, phenotype, function and presence within tumors. As a result, strategies to target CAFs in cancer therapy have been hampered by the difficulties in better defining the various populations of CAFs and by the lack of clear recognition of their specific function in cancer progression. This review discusses how a greater understanding of the heterogeneous nature of CAFs could lead to better approaches aimed at their use or at their targeting in the treatment of cancer.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kamila J. Bienkowska ◽  
Christopher J. Hanley ◽  
Gareth J. Thomas

The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an “activated” myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other “hallmarks of malignancy.” CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1921
Author(s):  
Farhana Mollah ◽  
Pegah Varamini

Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Micol Eleonora Fiori ◽  
Simone Di Franco ◽  
Lidia Villanova ◽  
Paola Bianca ◽  
Giorgio Stassi ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4720
Author(s):  
Paris Jabeen Asif ◽  
Ciro Longobardi ◽  
Michael Hahne ◽  
Jan Paul Medema

Cancer-associated fibroblasts (CAFs) play a key role in cancer progression by contributing to extracellular matrix (ECM) deposition and remodeling, extensive crosstalk with cancer cells, epithelial-to-mesenchymal transition (EMT), invasion, metastasis, and therapy resistance. As metastasis is a main reason for cancer-related deaths, it is crucial to understand the role of CAFs in this process. Colorectal cancer (CRC) is a heterogeneous disease and lethality is especially common in a subtype of CRC with high stromal infiltration. A key component of stroma is cancer-associated fibroblasts (CAFs). To provide new perspectives for research on CAFs and CAF-targeted therapeutics, especially in CRC, we discuss the mechanisms, crosstalk, and functions involved in CAF-mediated cancer invasion, metastasis, and protection. This summary can serve as a framework for future studies elucidating these roles of CAFs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianing Ding ◽  
Peng Kuang

Estrogen receptor α (ERα) is the major driver for breast tumor carcinogenesis and progression, while ERα positive breast cancer is the major subtype in breast malignancies, which account for 70% breast cancers in patients. The success of endocrine therapy such as tamoxifen is one of the biggest breakthroughs in breast cancer treatments. However, the endocrine therapy resistance is a headache problem in breast cancer. Further mechanisms need to be identified to the effect of ERα signaling in controlling breast cancer progression and drug resistance. HOIL-1 was firstly identified as the ERα transcriptional co-activator in modulating estrogen signaling in breast cancer. In our current study, we showed that HOIL-1, which was elevated in breast cancer, related to good prognosis in ERα positive breast cancer, but correlated with poor outcome in endocrine-treated patients. HOIL-1 was required for ERα positive breast cancer proliferation and clone formation, which effect could be rescued by further ERα overexpression. Further mechanism studies showed that HOIL-1 is required for ERα signaling activity in breast cancer cells. HOIL-1 could interact with ERα in the cytosol and modulate ERα stability via inhibiting ERα K48-linked poly-ubiquitination. Thus, our study demonstrated a novel post-translational modification in ERα signaling, which could provide novel strategy for ERα-driven breast cancer therapy.


Oncogenesis ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Luo-Jiao Liang ◽  
Yang Yang ◽  
Wen-Fei Wei ◽  
Xiang-Guang Wu ◽  
Rui-Ming Yan ◽  
...  

AbstractThe activation of stromal fibroblasts into cancer-associated fibroblasts (CAFs) has been suggested to promote primary tumor growth and progression; however, the mechanisms underlying the crosstalk between tumors and fibroblasts that drives stromal heterogeneity remain unknown. Here, we show that high Wnt2B levels were positively correlated with the number of CAFs in cervical cancer (CC). More importantly, Wnt2B was characteristically enriched in CC cell-secreted exosomes and transferred into fibroblasts to promote fibroblast activation via Wnt/β-catenin signaling, and inhibiting exosomal release or the Wnt/β-catenin signaling pathway diminished the activation induced by exosomal Wnt2B. Moreover, circulating exosomal Wnt2B also promoted CAF conversion in vitro and its expression was significantly higher in CC patients. In conclusion, our findings indicate that CC cell-derived Wnt2B can induce the activation of fibroblasts into CAFs, mainly via exosome-dependent secretion, thus providing directions for the development of diagnostic and therapeutic targets for CC progression.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3350-3350 ◽  
Author(s):  
Julie M Crudele ◽  
Geerte L. Van Sluis ◽  
Paris Margaritis ◽  
Joshua I Siner ◽  
Michael Sliozberg ◽  
...  

Abstract Abstract 3350 Cancer is frequently associated with activation of coagulation, and a procoagulant state facilitates tumor metastasis. Recent studies have suggested that the activated protein C (aPC) pathway plays a role in modulating tumor metastasis, and this protection likely requires both the anticoagulant and cytoprotective effects of aPC. Notably, our early work revealed that the inactive precursor, zymogen PC (zyPC), can even more effectively protect against metastasis. The aim of this study was therefore to explore mechanisms through which zyPC could prevent metastatic cancer progression in a murine cancer model. A liver gene transfer model using viral vectors was utilized to achieve a wide range of sustained expression of wildtype (WT) or mutant murine zyPCs. C57BL/6 experimental mice expressing stable levels of zyPCs and age and gender matched control mice receiving PBS were injected intravenously with 2.5×105 murine melanoma B16F10 cells, which metastasize to the lungs. After 3 weeks the number of pulmonary tumors was determined. Expression of WT zyPC in C57BL/6s decreased the rates of metastasis in a dose-dependent manner compared to PBS controls (p<0.01; n=8–18/group). These effects were noted even in mice injected with low vector dose (200% zyPC expression). Conversely, when PC-deficient mice (3% of normal, n=7) were administered B16F10s without zyPC-expression, they did not survive the full 3 weeks, while their littermate controls (PC > 50% of normal, n=6) did despite high rates of metastasis. These data clearly demonstrate the protective role of zyPC in tumor progression. We then tested modified zyPCs to identify the critical functions responsible for our observations in this tumor model. Two mutants with minimal anticoagulant function, R15Q and S195A, were generated. zyPC-R15Q is unable to dock to the thrombin-thrombomodulin complex active site and so cannot be converted to aPC. Compared to PBS controls (n=7), mice expressing zyPC-R15Q still showed a significant decrease in the number of tumor foci (p<0.001; 75–99% reduction; n=13) similar to the WT zyPC (p=0.28; n=8). Mice expressing zyPC-S195A (n=12), which has a mutation in the serine protease active site, also showed a significant decrease in the number of tumor foci compared to PBS controls (n=8; p<0.05; 90–99% reduction). As with the R15Q, mutating the S195 did not affect the ability of zyPC to protect against metastasis (p=0.22). Next, we tested the importance of the main PC/aPC cellular receptors in our model. Binding to endothelial protein C receptor (EPCR) enhances activation of PC. We inhibited this binding by injecting anti-EPCR blocking antibody 1560 (J Thromb Haemost. 2005 3:1351) intraperitoneally one hour prior to the B16F10 cells. zyPC-expressing mice that received anti-EPCR antibody (n=22) still had a significant reduction in tumor rates compared to PBS controls (n=10; p<0.01; 45–75% reduction). Moreover, mice expressing zyPC had similar levels of protection whether they received the anti-EPCR antibody or an isotype control (n=22–24; p=0.31). EPCR binding not only increases activation of PC, it also mediates the cytoprotective effect by clustering with and facilitating the activation of the signaling protease-activated receptor 1 (PAR1). PAR1 −/− mice expressing zyPC (n=21) challenged with B16F10 cells still had reduced rates of metastasis compared to PAR1 −/− PBS controls (n=15; p<0.01; 67% reduction). The zyPC protection in PAR1 null mice was comparable to that in PAR1 +/− littermate controls (n=10; p=0.619). Collectively, these findings suggest a distinct mechanism by which zyPC modulates tumor progression independent of EPCR and PAR1, both of which are required for aPC-mediated protection. Despite elevated circulating levels of PC, zyPC-expressing mice did not suffer from increased blood loss following tail clipping or show prolonged activated partial thromboplastin times (aPTTs) compared to hemostatically normal mice. In conclusion, zyPC protects against metastatic cancer progression in a dose-dependent manner. Our data show for the first time that this zyPC effect is independent of its anticoagulant function. Furthermore, protection is not mediated through EPCR or PAR1, suggesting an alternative pathway by which zyPC limits tumor progression. These findings suggest that WT zyPC and variants with little to no anticoagulant function are safe and efficacious in preventing metastatic cancer progression. Disclosures: Van Sluis: PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties. High:PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties. Spek:PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties. Arruda:PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties.


2019 ◽  
Vol 116 (18) ◽  
pp. 9020-9029 ◽  
Author(s):  
Alex Miranda ◽  
Phineas T. Hamilton ◽  
Allen W. Zhang ◽  
Swetansu Pattnaik ◽  
Etienne Becht ◽  
...  

Regulatory programs that control the function of stem cells are active in cancer and confer properties that promote progression and therapy resistance. However, the impact of a stem cell-like tumor phenotype (“stemness”) on the immunological properties of cancer has not been systematically explored. Using gene-expression–based metrics, we evaluated the association of stemness with immune cell infiltration and genomic, transcriptomic, and clinical parameters across 21 solid cancers. We found pervasive negative associations between cancer stemness and anticancer immunity. This occurred despite high stemness cancers exhibiting increased mutation load, cancer-testis antigen expression, and intratumoral heterogeneity. Stemness was also strongly associated with cell-intrinsic suppression of endogenous retroviruses and type I IFN signaling, and increased expression of multiple therapeutically accessible immunosuppressive pathways. Thus, stemness is not only a fundamental process in cancer progression but may provide a mechanistic link between antigenicity, intratumoral heterogeneity, and immune suppression across cancers.


Sign in / Sign up

Export Citation Format

Share Document