scholarly journals Cancer-Associated Fibroblasts: Understanding Their Heterogeneity

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3108
Author(s):  
Kévin Louault ◽  
Rong-Rong Li ◽  
Yves A. DeClerck

The tumor microenvironment (TME) plays a critical role in tumor progression. Among its multiple components are cancer-associated fibroblasts (CAFs) that are the main suppliers of extracellular matrix molecules and important contributors to inflammation. As a source of growth factors, cytokines, chemokines and other regulatory molecules, they participate in cancer progression, metastasis, angiogenesis, immune cell reprogramming and therapeutic resistance. Nevertheless, their role is not fully understood, and is sometimes controversial due to their heterogeneity. CAFs are heterogeneous in their origin, phenotype, function and presence within tumors. As a result, strategies to target CAFs in cancer therapy have been hampered by the difficulties in better defining the various populations of CAFs and by the lack of clear recognition of their specific function in cancer progression. This review discusses how a greater understanding of the heterogeneous nature of CAFs could lead to better approaches aimed at their use or at their targeting in the treatment of cancer.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1399
Author(s):  
Rushikesh S. Joshi ◽  
Samanvi S. Kanugula ◽  
Sweta Sudhir ◽  
Matheus P. Pereira ◽  
Saket Jain ◽  
...  

In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Richard Lee Barrett ◽  
Ellen Puré

Fibroblasts play an essential role in organogenesis and the integrity of tissue architecture and function. Growth in most solid tumors is dependent upon remodeling ‘stroma’, composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which plays a critical role in tumor initiation, progression, metastasis, and therapeutic resistance. Recent studies have clearly established that the potent immunosuppressive activity of stroma is a major mechanism by which stroma can promote tumor progression and confer resistance to immune-based therapies. Herein, we review recent advances in identifying the stroma-dependent mechanisms that regulate cancer-associated inflammation and antitumor immunity, in particular, the interactions between fibroblasts and immune cells. We also review the potential mechanisms by which stroma can confer resistance to immune-based therapies for solid tumors and current advancements in stroma-targeted therapies.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoqi Mao ◽  
Jin Xu ◽  
Wei Wang ◽  
Chen Liang ◽  
Jie Hua ◽  
...  

AbstractCancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.


Author(s):  
Xiulin Jiang ◽  
Yixiao Yuan ◽  
Lin Tang ◽  
Juan Wang ◽  
Qianqian Liu ◽  
...  

Growing evidence has demonstrated that UBE2C plays a critical role in cancer progression, but there is no study focusing on the prognosis, upstream regulation mechanism, and immunological roles of UBE2C across diverse tumor types. In this study, we found that UBE2C was elevated in this human pan-cancer analysis, and high expression of UBE2C was correlated with poor prognosis. In addition, UBE2C expression was markedly associated with tumor mutation burden (TMB), microsatellite instability (MSI), immune cell infiltration, and diverse drug sensitivities. Finally, we showed that the METTL3/SNHG1/miRNA-140-3p axis could potentially regulate UBE2C expression. N(6)-Methyladenosine (m6A) modifications improved the stability of methylated SNHG1 transcripts by decreasing the rate of RNA degradation, which lead to upregulation of SNHG1 in non-small cell lung cancer (NSCLC). In vitro functional experiments showed that SNHG1, as a competing endogenous RNA, sponges miR-140-3p to increase UBE2C expression in NSCLC cell lines. Our study elucidates the clinical importance and regulatory mechanism of the METTL3/SNHG1/miRNA-140-3p/UBE2C axis in NSCLC and provides a prognostic indicator, as well as a promising therapeutic target for patients with NSCLC.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kamila J. Bienkowska ◽  
Christopher J. Hanley ◽  
Gareth J. Thomas

The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an “activated” myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other “hallmarks of malignancy.” CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.


2018 ◽  
Vol 25 (5) ◽  
pp. 523-531 ◽  
Author(s):  
Kwon Joong Na ◽  
Hongyoon Choi

Although papillary thyroid cancer (PTC) is curable with excellent survival rate, patients with dedifferentiated PTC suffer the recurrence or death. As cancer immune escape plays a critical role in cancer progression, we aimed to investigate the relationship between differentiation and immune landscape of PTC and its implications for immunotherapy. Using The Cancer Genome Atlas data, we estimated the immune cell enrichment scores and overall immune infiltration, ImmuneScore, to characterize the immune landscape of PTC. Thyroid differentiation score (TDS) was calculated from 16 thyroid function genes. We demonstrated that ImmuneScore had a significant negative correlation with TDS, and BRAFV600E+ tumors showed significantly low TDS and high ImmuneScore. Enrichment scores of myeloid cells and B-cells were negatively correlated with TDS, while those of plasma cells were positively correlated with TDS. In addition, the association between TDS, ImmuneScore and immunosuppressive markers (CTLA-4, PD-L1, HLA-G) were evaluated according to BRAFV600E status. All immunosuppressive markers expression had a significant negative correlation with TDS, and they were significantly higher in BRAFV600E+ status. Subgroups were divided by median values of TDS and ImmuneScore, and immunosuppressive markers of these subgroups were compared. The immunosuppressive markers expression was the highest in high ImmuneScore and low TDS subgroup. Furthermore, ImmuneScore had a significant association with recurrence-free survival, irrespective of clinicopathologic factors including BRAFV600E status. These findings based on gene expression data illuminate the immune landscape of PTC and its association with TDS, immunosuppressive markers and recurrence. Our results would be extended to investigate immunotherapeutic approaches in PTC.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 406 ◽  
Author(s):  
Subramanyam Dasari ◽  
Yiming Fang ◽  
Anirban K. Mitra

Ovarian cancer is the most lethal gynecologic malignancy, and patient prognosis has not improved significantly over the last several decades. In order to improve therapeutic approaches and patient outcomes, there is a critical need for focused research towards better understanding of the disease. Recent findings have revealed that the tumor microenvironment plays an essential role in promoting cancer progression and metastasis. The tumor microenvironment consists of cancer cells and several different types of normal cells recruited and reprogrammed by the cancer cells to produce factors beneficial to tumor growth and spread. These normal cells present within the tumor, along with the various extracellular matrix proteins and secreted factors, constitute the tumor stroma and can compose 10–60% of the tumor volume. Cancer associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, and play a critical role in promoting many aspects of tumor function. This review will describe the various hypotheses about the origin of CAFs, their major functions in the tumor microenvironment in ovarian cancer, and will discuss the potential of targeting CAFs as a possible therapeutic approach.


2017 ◽  
Vol 23 (32) ◽  
pp. 4745-4757 ◽  
Author(s):  
Ada Pesapane ◽  
Pia Ragno ◽  
Carmine Selleri ◽  
Nunzia Montuori

The 67 kDa high affinity laminin receptor (67LR) is a non-integrin cell surface receptor for laminin, the major component of basement membranes. Interactions between 67LR and laminin play a major role in mediating cell adhesion, migration, proliferation and survival. 67LR derives from homo- or hetero-dimerization of a 37 kDa cytosolic precursor (37LRP), most probably by fatty acid acylation. Interestingly, 37LRP, also called p40 or OFA/iLR (oncofetal antigen/immature laminin receptor), is a multifunctional protein with a dual activity in the cytoplasm and in the nucleus. In the cytoplasm, 37LRP it is associated with the 40S subunit of ribosome, playing a critical role in protein translation and ribosome biogenesis while in the nucleus it is tightly associated with nuclear structures, and bound to components of the cytoskeleton, such as tubulin and actin. 67LR is mainly localized in the cell membrane, concentrated in lipid rafts. Acting as a receptor for laminin is not the only function of 67LR; indeed, it also acts as a receptor for viruses, bacteria and prions. 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potential. The primary function of 67LR in cancer is to promote tumor cell adhesion to basement membranes, the first step in the invasion-metastasis cascade. Thus, 67LR is overexpressed in neoplastic cells as compared to their normal counterparts and its overexpression is considered a molecular marker of metastatic aggressiveness in cancer of many tissues, including breast, lung, ovary, prostate, stomach, thyroid and also in leukemia and lymphoma. Thus, inhibiting 67LR binding to laminin could be a feasible approach to block cancer progression. Here, we review the current understanding of the structure and function of this molecule, highlighting its role in cancer invasion and metastasis and reviewing the various therapeutic options targeting this receptor that could have a promising future application.


2019 ◽  
Vol 9 (22) ◽  
pp. 4784
Author(s):  
Vietsch ◽  
Peran ◽  
Suker ◽  
van den Bosch ◽  
Sijde ◽  
...  

Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic KrasG12D/+; Trp53R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


Sign in / Sign up

Export Citation Format

Share Document