scholarly journals Cancer Cells Shuttle Extracellular Vesicles Containing Oncogenic Mutant p53 Proteins to the Tumor Microenvironment

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2985
Author(s):  
Bibek Bhatta ◽  
Ishai Luz ◽  
Christian Krueger ◽  
Fanny Xueting Teo ◽  
David P. Lane ◽  
...  

Extracellular vesicles (EVs) shed by cancer cells play a major role in mediating the transfer of molecular information by reprogramming the tumor microenvironment (TME). TP53 (encoding the p53 protein) is the most mutated gene across many cancer types. Mutations in TP53 not only result in the loss of its tumor-suppressive properties but also results in the acquisition of novel gain-of-functions (GOF) that promote the growth of cancer cells. Here, we demonstrate that GOF mutant p53 proteins can be transferred via EVs to neighboring cancer cells and to macrophages, thus modulating them to release tumor supportive cytokines. Our data from pancreatic, lung, and colon carcinoma cell lines demonstrate that the mutant p53 protein can be selectively sorted into EVs. More specifically, mutant p53 proteins in EVs can be taken up by neighboring cells and mutant p53 expression is found in non-tumor cells in both human cancers and in non-human tissues in human xenografts. Our findings shed light on the intricate methods in which specific GOF p53 mutants can promote oncogenic mechanisms by reprogramming and then recruiting non-cancerous elements for tumor progression.

2020 ◽  
Vol 41 (11) ◽  
pp. 1461-1470
Author(s):  
Bibek Bhatta ◽  
Tomer Cooks

Abstract The tumor microenvironment (TME) comprises an assortment of immune and non-immune cells. The interactions between the cancer cells and their surrounding TME are known to be a cardinal factor in all stages of cancer progression, from initiation to metastasis. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are considered two of the most abundant TME members associated with poor prognosis in various cancer types. Intercellular communication between the cancer cells and TME cells might occur via direct cell–cell contact or achieved through secreted factors such as cytokines, growth factors and extracellular vesicles (EVs). EVs are released by almost every cell type and by cancer cells in particular. EVs are loaded with unique molecular cargos that might include DNA, proteins, RNA and lipids, commonly reflecting the physiological traits of their donor cells. Once released, EVs are capable of initiating short- and long-distance communication in an autocrine, paracrine and endocrine fashion. The molecular cargos within the EVs are able to impart phenotypic changes at the receiving end thus allowing EV-releasing cancer cells to deliver messages to TME cells and tighten their grasp over the cancerous tissue. In this concise review, we aim to document the bidirectional EV-based communication between cancer cell, TAMs and CAFs, tilting the balance in favor of cancer progression and metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2435
Author(s):  
Thomas J. Brown ◽  
Victoria James

Cancer stem cells (CSCs) have increasingly been shown to be a crucial element of heterogenous tumors. Although a relatively small component of the population, they increase the resistance to treatment and the likelihood of recurrence. In recent years, it has been shown, across multiple cancer types (e.g., colorectal, breast and prostate), that reciprocal communication between cancer and the microenvironment exists, which is, in part, facilitated by extracellular vesicles (EVs). However, the mechanisms of this method of communication and its influence on CSC populations is less well-understood. Therefore, the aim of this systematic review is to determine the evidence that supports the role of EVs in the manipulation of the tumor microenvironment to promote the survival of CSCs. Embase and PubMed were used to identify all studies on the topic, which were screened using PRISMA guidelines, resulting in the inclusion of 16 studies. These 16 studies reported on the EV content, pathways altered by EVs and therapeutic targeting of CSC through EV-mediated changes to the microenvironment. In conclusion, these studies demonstrated the role of EV-facilitated communication in maintaining CSCs via manipulation of the tumor microenvironment, demonstrating the potential of creating therapeutics to target CSCs. However, further works are needed to fully understand the targetable mechanisms upon which future therapeutics can be based.


2020 ◽  
Vol 245 (13) ◽  
pp. 1073-1086
Author(s):  
Sukanya Roy ◽  
Subhashree Kumaravel ◽  
Ankith Sharma ◽  
Camille L Duran ◽  
Kayla J Bayless ◽  
...  

Hypoxia or low oxygen concentration in tumor microenvironment has widespread effects ranging from altered angiogenesis and lymphangiogenesis, tumor metabolism, growth, and therapeutic resistance in different cancer types. A large number of these effects are mediated by the transcription factor hypoxia inducible factor 1⍺ (HIF-1⍺) which is activated by hypoxia. HIF1⍺ induces glycolytic genes and reduces mitochondrial respiration rate in hypoxic tumoral regions through modulation of various cells in tumor microenvironment like cancer-associated fibroblasts. Immune evasion driven by HIF-1⍺ further contributes to enhanced survival of cancer cells. By altering drug target expression, metabolic regulation, and oxygen consumption, hypoxia leads to enhanced growth and survival of cancer cells. Tumor cells in hypoxic conditions thus attain aggressive phenotypes and become resistant to chemo- and radio- therapies resulting in higher mortality. While a number of new therapeutic strategies have succeeded in targeting hypoxia, a significant improvement of these needs a more detailed understanding of the various effects and molecular mechanisms regulated by hypoxia and its effects on modulation of the tumor vasculature. This review focuses on the chief hypoxia-driven molecular mechanisms and their impact on therapeutic resistance in tumors that drive an aggressive phenotype. Impact statement Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.


Oncotarget ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 5823-5833 ◽  
Author(s):  
Dun Li ◽  
Natalia D. Marchenko
Keyword(s):  

2019 ◽  
Vol 20 (11) ◽  
pp. 2608 ◽  
Author(s):  
Sara Rocha ◽  
Sara Pinto Teles ◽  
Mafalda Azevedo ◽  
Patrícia Oliveira ◽  
Joana Carvalho ◽  
...  

Extracellular vesicles (EVs) secreted by tumor cells modulate recipient cells’ behavior, but their effects in normal cells from the tumor microenvironment remain poorly known. In this study, we dissected the functional impact of gastric cancer cell-derived EVs (GC-EVs), representative of distinct GC histotypes, on the behavior of normal isogenic epithelial and mesenchymal cells. GC-EVs were isolated by differential centrifugation and characterized by transmission electron microscopy, nanoparticle tracking analysis, and imaging flow-cytometry. Epithelial and mesenchymal cells were challenged with GC-EVs and submitted to proliferation, migration, and invasion assays. Expression of epithelial and mesenchymal markers was followed by immunofluorescence and flow-cytometry. Our results indicated that GC-EVs secreted by diffuse-type cancer cells decrease the migration of recipient cells. This effect was more prominent and persistent for mesenchymal recipient cells, which also increased Fibronectin expression in response to EVs. GC-EVs secreted by cancer cells derived from tumors with an intestinal component increased invasion of recipient epithelial cells, without changes in EMT markers. In summary, this study demonstrated that GC-EVs modulate the migration and invasion of epithelial and mesenchymal cells from the tumor microenvironment, in a histotype-dependent manner, highlighting new features of intestinal and diffuse-type GC cells, which may help explaining differential metastasis patterns and aggressiveness of GC histotypes.


2019 ◽  
Vol 9 (23) ◽  
pp. 5170 ◽  
Author(s):  
G.M. Azevedo ◽  
J.F.A. Valente ◽  
A. Sousa ◽  
A.Q. Pedro ◽  
P. Pereira ◽  
...  

The dysfunction of the tumor suppressor gene TP53 has been associated with the pathogenesis of the majority of the cases of cancer reported to date, leading the cell to acquire different features known as the cancer hallmarks. In normal situations, the protein p53 protects the cells against tumorigenesis. By detecting metabolic stress or DNA damage in response to stress, p53 can lead the cell to senescence, autophagy, cell cycle arrest, DNA repair, and apoptosis. Thus, in the case of p53 mutations, it is reasonable to assume that the reestablishment of its function, may restrain the proliferation of cancer cells. The concept of cancer gene therapy can be based on this assumption, and suitable biotechnological approaches must be explored to assure the preparation of gene-based biopharmaceuticals. Although numerous procedures have already been established to purify supercoiled plasmid DNA (sc pDNA), the therapeutic application is highly dependent on the biopharmaceutical’s activity, which can be affected by the chromatographic conditions used. Thus, the present work aims at comparing quality and in vitro activity of the supercoiled (sc) isoform of the p53 encoding plasmid purified by three different amino acids-based chromatographic strategies, involving histidine–agarose, arginine–macroporous, and histidine–monolith supports. The B-DNA topology was maintained in all purified pDNA samples, but their bioactivity, related to the induction of protein p53 expression and apoptosis in cancer cells, was higher with arginine–macroporous support, followed by histidine–monolith and histidine–agarose. Despite the purity degree of 92% and recovery yield of 43% obtained with arginine–macroporous, the sc pDNA sample led to a higher expression level of the therapeutic p53 protein (58%) and, consequently, induced a slightly higher apoptotic effect (27%) compared with sc pDNA samples obtained with histidine–monolithic support (26%) and histidine–agarose support (24%). This behavior can be related to the mild chromatographic conditions used with arginine–macroporous support, which includes the use of low salt concentrations, at neutral pH and lower temperatures, when compared to the high ionic strength of ammonium sulfate and acidic pH used with histidine-based supports. These results can contribute to field of biopharmaceutical preparation, emphasizing the need to control several experimental conditions while adapting and selecting the methodologies that enable the use of milder conditions as this can have a significant impact on pDNA stability and biological activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Cory D. Bovenzi ◽  
James Hamilton ◽  
Patrick Tassone ◽  
Jennifer Johnson ◽  
David M. Cognetti ◽  
...  

Background. Metabolism in the tumor microenvironment can play a critical role in tumorigenesis and tumor aggression. Metabolic coupling may occur between tumor compartments; this phenomenon can be prognostically significant and may be conserved across tumor types. Monocarboxylate transporters (MCTs) play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. The transporters MCT1 and MCT4 are regulated via expression of their chaperone, CD147.Methods. We conducted a meta-analysis of existing publications on the relationship between MCT1, MCT4, and CD147 expression and overall survival and disease-free survival in cancer, using hazard ratios derived via multivariate Cox regression analyses.Results. Increased MCT4 expressions in the tumor microenvironment, cancer cells, or stromal cells were all associated with decreased overall survival and decreased disease-free survival (p<0.001for all analyses). Increased CD147 expression in cancer cells was associated with decreased overall survival and disease-free survival (p<0.0001for both analyses). Few studies were available on MCT1 expression; MCT1 expression was not clearly associated with overall or disease-free survival.Conclusion. MCT4 and CD147 expression correlate with worse prognosis across many cancer types. These results warrant further investigation of these associations.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ling Wu ◽  
Xiang H.-F. Zhang

Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) have been extensively studied. Their pleotropic roles were observed in multiple steps of tumor progression and metastasis, and sometimes appeared to be inconsistent across different studies. In this review, we collectively discussed many lines of evidence supporting the mutual influence between cancer cells and TAMs/TANs. We focused on how direct interactions among these cells dictate co-evolution involving not only clonal competition of cancer cells, but also landscape shift of the entire tumor microenvironment (TME). This co-evolution may take distinct paths and contribute to the heterogeneity of cancer cells and immune cells across different tumors. A more in-depth understanding of the cancer-TAM/TAN co-evolution will shed light on the development of TME that mediates metastasis and therapeutic resistance.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1450 ◽  
Author(s):  
Patrick Santos ◽  
Fausto Almeida

Tumor microenvironment (TME) is composed of different cellular populations, such as stromal, immune, endothelial, and cancer stem cells. TME represents a key factor for tumor heterogeneity maintenance, tumor progression, and drug resistance. The transport of molecules via extracellular vesicles emerged as a key messenger in intercellular communication in the TME. Exosomes are small double-layered lipid extracellular vesicles that can carry a variety of molecules, including proteins, lipids, and nucleic acids. Exosomal miRNA released by cancer cells can mediate phenotypical changes in the cells of TME to promote tumor growth and therapy resistance, for example, fibroblast- and macrophages-induced differentiation. Cancer stem cells can transfer and enhance drug resistance in neighboring sensitive cancer cells by releasing exosomal miRNAs that target antiapoptotic and immune-suppressive pathways. Exosomes induce drug resistance by carrying ABC transporters, which export chemotherapeutic agents out of the recipient cells, thereby reducing the drug concentration to suboptimal levels. Exosome biogenesis inhibitors represent a promising adjunct therapeutic approach in cancer therapy to avoid the acquisition of a resistant phenotype. In conclusion, exosomal miRNAs play a crucial role in the TME to confer drug resistance and survivability to tumor cells, and we also highlight the need for further investigations in this promising field.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e14673-e14673
Author(s):  
Luisa Quaresma ◽  
Antonio CALDEIRA Fradique ◽  
Fernanda Cabrita ◽  
Alexandra Pupo ◽  
Guedes DA Silva ◽  
...  

e14673 Background: Lymph node Metastases play a major role as an independent prognostic factor in gastric cancer. Presence of distal lymph node metastases assumes a pejorative prognostic significance, and represents a problem in terms of therapeutic approach. For this reason it’s of major interest to find predictive markers of distal lymph node chain involvement. The P53 tumor suppressor gene, a product of the TP53 gene works normally as a brake on DNA replication, as suppressor of angiogenesis and triggering of apoptosis. The gene most frequently mutated in gastric cancer is the TP53, that is responsible for the production of P53 mutant protein, which forms inactive complex with the native protein, and manifest by the overexpression of p53 in immunocytochemistry. The overexpression of P53 gene has been considered a bad prognostic factor associated mainly with lymph node metastases. Methods: This study seeks to determine the relation between the expression of P53 and the presence of distal lymph node metastases as an indicator for an extended lymphadenectomy. A total of 50 patients undergoing surgery with D2 lymphadenectomy for gastric carcinoma with curative intent were enrolled in this work. Therefore it was evaluated in 1,786 lymph nodes the correlation between the P53 expression with tumor location, size, histological type, depth , number of nodes involved, number of distal lymph node metastases and the TNM stage. Results: In all parameters, mutant P53 protein related with indicators of poor prognosis. In particular has demonstrated a statistical significant correlation (p=0.019) with the presence of distal lymph node metastases. The main objective of this study which was finding a prognostic predictor of distal nodal metastases has been reached. Conclusions: Mutant P53 protein is a good prognostic indicator, for the presence of distal lymph node involvement in gastric carcinoma.


Sign in / Sign up

Export Citation Format

Share Document