scholarly journals Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5911
Author(s):  
Hannah V. Newnes ◽  
Jesse D. Armitage ◽  
Katherine M. Audsley ◽  
Anthony Bosco ◽  
Jason Waithman

Immunotherapy has revolutionised the treatment of cancers by exploiting the immune system to eliminate tumour cells. Despite the impressive response in a proportion of patients, clinical benefit has been limited thus far. A significant focus to date has been the identification of specific markers associated with response to immunotherapy. Unfortunately, the heterogeneity between patients and cancer types means identifying markers of response to therapy is inherently complex. There is a growing appreciation for the role of the tumour microenvironment (TME) in directing response to immunotherapy. The TME is highly heterogeneous and contains immune, stromal, vascular and tumour cells that all communicate and interact with one another to form solid tumours. This review analyses major cell populations present within the TME with a focus on their diverse and often contradictory roles in cancer and how this informs our understanding of immunotherapy. Furthermore, we discuss the role of integrated omics in providing a comprehensive view of the TME and demonstrate the potential of leveraging multi-omics to decipher the underlying mechanisms of anti-tumour immunity for the development of novel immunotherapeutic strategies.

2020 ◽  
Vol 22 (1) ◽  
pp. 27
Author(s):  
Ilaria Plantamura ◽  
Alessandra Cataldo ◽  
Giulia Cosentino ◽  
Marilena V. Iorio

Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology—the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Madyson Colton ◽  
Eleanor J. Cheadle ◽  
Jamie Honeychurch ◽  
Tim M. Illidge

Abstract Radiotherapy (RT) is a highly effective anti-cancer therapy delivered to around 50–60% of patients. It is part of therapy for around 40% of cancer patients who are cured of their disease. Until recently, the focus of this anti-tumour efficacy has been on the direct tumour cytotoxicity and RT-induced DNA damage. Recently, the immunomodulatory effects of RT on the tumour microenvironment have increasingly been recognized. There is now intense interest in potentially using RT to induce an anti-tumour immune response, which has led to rethinking into how the efficacy of RT could be further enhanced. Following the breakthrough of immune check point inhibitors (ICIs), a new era of immuno-oncology (IO) agents has emerged and established immunotherapy as a routine part of cancer treatment. Despite ICI improving outcomes in many cancer types, overall durable responses occur in only a minority of patients. The immunostimulatory effects of RT make combinations with ICI attractive to potentially amplify anti-tumour immunity resulting in increased tumour responses and improved outcomes. In contrast, tumours with profoundly immunosuppressive tumour microenvironments, dominated by myeloid-derived cell populations, remain a greater clinical challenge and RT may potentially further enhance the immunosuppression. To harness the full potential of RT and IO agent combinations, further insights are required to enhance our understanding of the role these immunosuppressive myeloid populations play, how RT influences these populations and how they may be therapeutically manipulated in combination with RT to improve outcomes further. These are exciting times with increasing numbers of IO targets being discovered and IO agents undergoing clinical evaluation. Multidisciplinary research collaborations will be required to establish the optimal parameters for delivering RT (target volume, dose and fractionation) in combination with IO agents, including scheduling to achieve maximal therapeutic efficacy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yihao Wang ◽  
Rui Huang ◽  
Guopei Zheng ◽  
Jianfeng Shen

AbstractRecent technical advances have led to the discovery of novel functions of extrachromosomal DNA (ecDNA) in multiple cancer types. Studies have revealed that cancer-associated ecDNA shows a unique circular shape and contains oncogenes that are more frequently amplified than that in linear chromatin DNA. Importantly, the ecDNA-mediated amplification of oncogenes was frequently found in most cancers but rare in normal tissues. Multiple reports have shown that ecDNA has a profound impact on oncogene activation, genomic instability, drug sensitivity, tumor heterogeneity and tumor immunology, therefore may offer the potential for cancer diagnosis and therapeutics. Nevertheless, the underlying mechanisms and future applications of ecDNA remain to be determined. In this review, we summarize the basic concepts, biological functions and molecular mechanisms of ecDNA. We also provide novel insights into the fundamental role of ecDNA in cancer.


2020 ◽  
Vol 134 (16) ◽  
pp. 2091-2115
Author(s):  
Gemma van Duijneveldt ◽  
Michael D.W. Griffin ◽  
Tracy L. Putoczki

Abstract Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.


2011 ◽  
pp. n/a-n/a
Author(s):  
Leanne K. Bell ◽  
Nicola L. Ainsworth ◽  
Shen-Han Lee ◽  
John R. Griffiths

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caleb R. Perez ◽  
Michele De Palma

AbstractAt the interface between the innate and adaptive immune system, dendritic cells (DCs) play key roles in tumour immunity and hold a hitherto unrealized potential for cancer immunotherapy. Here we review the role of distinct DC subsets in the tumour microenvironment, with special emphasis on conventional type 1 DCs. Integrating new knowledge of DC biology and advancements in cell engineering, we provide a blueprint for the rational design of optimized DC vaccines for personalized cancer medicine.


2021 ◽  
Author(s):  
◽  
Carolin Wachtel

Cancer is the major cause of death besides cardiovascular disease. Leukaemia represents the most prevalent malignancy in children with a frequency of 30 % and is one of the ten leading types of cancer in adults. Philadelphia Chromosome-positive B-ALL (Ph+ B-ALL) is driven by the cytogenetic aberration of the reciprocal chromosomal translocation t(9;22)(q34;q11) leading to the formation of the Philadelphia chromosome with a BCR-ABL1 fusion gene. This fusion gene encodes a BCR-ABL1 oncoprotein which is characterized by a constitutively enhanced tyrosine kinase activity promoting amplified proliferation, differentiation arrest and resistance to cell death. Ph+ B-ALL is considered the most aggressive ALL subtype with a long-term survival rate in the range of only 30 % despite intensive standard of care including chemotherapy in combination with a tyrosine kinase inhibitor (TKI) followed by allogeneic stem cell transplantation after remission for clinically fit patients. The efficacy of chemotherapy has long been mainly attributed to tumour cell toxicity while immune modulating effects have been overlooked, especially in light of known immunosuppressive properties. Accumulative evidence, however, emphasizes the ability of chemotherapeutic agents, including TKIs, to normalise or re-educate a dysfunctional tumour microenvironment (TME) resulting in enhanced anti-tumour immunity. One of the underlying mechanisms of immune modulation is the induction of immunogenic cell death (ICD). ICD is an anti-tumour agent-induced cell death modality determined by the capacity to convert cancer cells into anti-cancer vaccines. The induction of ICD relies on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells succumbing to ICD. Translocation of CALR to the cell surface, extracellular secretion of ATP and release of HMGB1 from the nucleus are key hallmarks of ICD that mediate anti-tumour immunity upon binding to antigen presenting cells resulting in a tumour antigen-specific immune response. Besides these molecular determinants, ICD is functionally defined by the inhibition of tumour growth in a vaccination assay in which mice are injected with tumour cells exposed to the potential ICD inducer in-vitro and then re-challenged with live tumour cells of the same cancer type. Both molecular and functional criteria determine the gold standard approach to assess ICD. By increasing the immunogenicity of cancer cells, ICD contributes to the restoration of immunosurveillance as an essential feature of tumour rejection, which is clinically reflected by improved therapeutic efficacy and disease outcome in patients. Therefore, identifying novel ICD inducers is an objective of interest in the context of cancer therapy. In respect of these considerations, the aim addressed in the present work is the examination of the second-generation TKI Nilotinib for the ability to induce ICD. The thesis is set in the context of the group's research on the role of Gas6/TAM signalling within the TME regarding the pathogenesis of acute leukaemia. In in-vivo experiments of our research group it has been consistently observed that the use of Nilotinib enhances the anti-leukaemic immunity mediated by a deletion of Gas6. Against the background of increasing importance of chemotherapeutic agents as potent modulators of a dysregulated TME, it was hypothesized that Nilotinib may synergize with a Gas6-deficient environment by inducing ICD in Ph+ B-ALL cells. In growth inhibition and Annexin V/Propidium iodide cell death assays Nilotinib was shown to induce cell death in concentration-dependent manner that occurs bimodally in terms of cell death modality ranging between apoptosis and necrosis. By ICD marker analysis, comprising flow-cytometric detection of CALR exposure, chemoluminescence-based ATP measurement and immunoblotting for HMGB1, it was found that Nilotinib-induced cell death is not accompanied by CALR exposure and ATP secretion, but is associated with the release of HMGB1. In macrophages co-culture experiments with Nilotinib-treated leukaemic cells, no relevant shift in terms of macrophages activation and polarisation was observed in either a juxtacrine or paracrine setup. In consistency with the results obtained in the in-vitro experiments, Nilotinib was not potent to elicit a protective immune response in mice within a vaccination assay. Conclusively, Nilotinib was identified to not qualify as bona fide ICD inducer. The role of Nilotinib-induced cell death and HMGB1 release are proposed as objective for further investigation concerning the synergistic interplay between Nilotinib and a Gas6-deficient environment. Efforts addressing exploration and optimisation of the immunological potential of chemotherapeutic agents are a promising approach aimed at providing cancer patients with the best possible treatment in future.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4610
Author(s):  
Teresa Franchi-Mendes ◽  
Rodrigo Eduardo ◽  
Giacomo Domenici ◽  
Catarina Brito

The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.


2019 ◽  
Vol 7 (14) ◽  
pp. 2391-2398 ◽  
Author(s):  
Dimitur Chavdarov Chonov ◽  
Maria Magdalena Krasimirova Ignatova ◽  
Julian Rumenov Ananiev ◽  
Maya Vladova Gulubova

The predominant role of IL-6 in cancer is its key promotion of tumour growth. IL-6 binds IL-6 receptor (IL-6R) and the membrane-bound glycoprotein gp130. The complex I-6/IL-6R/gp130 starts the Janus kinases (JAKs) and signal transducer and activator of transcription 3 (STAT3) or JAK/STAT3 pathway. IL-6R exits in two forms: a membrane-bound IL-6Rα subunit (mIL-6R) that participates in classic signalling pathway and soluble IL-6R subunit (sIL-6R) engaged in trans-signalling. The pro-tumour functions of IL-6 are associated with STAT3, a major oncogenic transcription factor that triggers up-regulation of target genes responsible for tumour cell survival. IL-6 combined with TGF-β induces proliferation of pathogenic Th17 cells. The anti-tumour function of IL-6 is the promotion of anti-tumour immunity. IL-6 trans-signaling contributed to transmigration of lymphocytes in high endothelial venules (HEV). Dendritic cell (DC) secreted IL-6 in the lymph node influences the activation, distribution and polarisation of the immune response. Elevated serum levels of IL-6 and increased expression of IL-6 in tumour tissue are negative prognostic marker for patients’ survival.


Sign in / Sign up

Export Citation Format

Share Document