scholarly journals Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 449 ◽  
Author(s):  
Caroline Carriel Schmitt ◽  
María Gagliardi Reolon ◽  
Michael Zimmermann ◽  
Klaus Raffelt ◽  
Jan-Dierk Grunwaldt ◽  
...  

Four nickel-based catalysts are synthesized by wet impregnation and evaluated for the hydrotreatment/hydrodeoxygenation of beech wood fast-pyrolysis bio-oil. Parameters such as elemental analysis, pH value, and water content, as well as the heating value of the upgraded bio-oils are considered for the evaluation of the catalysts’ activity and catalyst reuse in cycles of hydrodeoxygenation after regeneration. The reduction temperature, selectivity and hydrogen consumption are distinct among them, although all catalysts tested produce upgraded bio-oils with reduced oxygen concentration, lower water content and higher energy density. Ni/SiO2, in particular, can remove more than 50% of the oxygen content and reduce the water content by more than 80%, with low coke and gas formation. The evaluation over four consecutive hydrotreatment reactions and catalyst regeneration shows a slightly reduced hydrodeoxygenation activity of Ni/SiO2, mainly due to deactivation caused by sintering and adsorption of poisoning substances, such as sulfur. Following the fourth catalyst reuse, the upgraded bio-oil shows 43% less oxygen in comparison to the feedstock and properties comparable to the upgraded bio-oil obtained with the fresh catalyst. Hence, nickel-based catalysts are promising for improving hardwood fast-pyrolysis bio-oil properties, especially monometallic nickel catalysts supported on silica.

Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 784 ◽  
Author(s):  
Caroline Carriel Schmitt ◽  
Anna Zimina ◽  
Yakub Fam ◽  
Klaus Raffelt ◽  
Jan-Dierk Grunwaldt ◽  
...  

The catalytic activity of high-loaded Ni-based catalysts for beech wood fast-pyrolysis bio-oil hydrotreatment is compared to Ru/C. The influence of promoter, temperature, reaction time, and consecutive upgrading is investigated. The catalytic activity is addressed in terms of elemental composition, pH value, H2 consumption, and water content, while the selectivity is based on the GC-MS/FID results. The catalysts showed similar deoxygenation activity, while the highest hydrogenation activity and the highest upgraded oil yields were obtained with Ni-based catalysts. The elemental composition of upgraded oils was comparable for 2 and 4 h of reaction, and the temperature showed a positive effect for reactions with Ni–Cr and Ru/C. Ni–Cr showed superior activity for the conversion of organic acids, sugars and ketones, being selected for the 2-step upgrading reaction. The highest activity correlates to the strength of the acid sites promoted by Cr2O3. Consecutive upgrading reduced the content of oxygen by 64.8% and the water content by 90%, whereas the higher heating value increased by 90.1%. While more than 96% of the organic acid content was converted, the discrepancy of aromatic compounds quantified by 1H-NMR and GC-MS/FID may indicate polymerization of aromatics taking place during the second upgrading step.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2020 ◽  
Vol 58 (5) ◽  
pp. 604
Author(s):  
Hong Nam Nguyen ◽  
Bùi Văn Đức ◽  
Ngoc Linh Vu ◽  
Hong Nam Nguyen ◽  
Thi Thu Ha Vu ◽  
...  

Despite its prominent potential, the use of rubber wood (Hevea brasiliensis) for bio-oil production has not been fully investigated. This study reported experimental results of the bio-oil production and upgrading from rubber wood using fast pyrolysis technology. The effects of catalyst nature (vermiculite and dolomite), upgrading temperature and bio-oil/catalyst ratio on the product quality were deeply investigated. The results showed that dolomite was suitable to be used as a catalyst for bio-oil upgrading. At 600 °C and a bio-oil/catalyst ratio of 1:1, the bio-oil yield was maximized, while at 400 °C and a ratio of 1:3, the bio-oil heating value was maximized. Depending on usage purposes, a yield-oriented, heating value-oriented or in-between bio-oil upgrading solution could be considered.


Fuel ◽  
2008 ◽  
Vol 87 (12) ◽  
pp. 2523-2532 ◽  
Author(s):  
T. Cornelissen ◽  
M. Jans ◽  
J. Yperman ◽  
G. Reggers ◽  
S. Schreurs ◽  
...  

Author(s):  
Marcos Antônio KLUNK ◽  
Sudipta DASGUPTA ◽  
Mohuli DAS

Rice husk is among the products that stand out in use, and it is used as an alternative source of energy. The use of rice husk as biomass in the feeding of pyrolytic reactors for power generation and chemical products can reduce the environmental problem destination of this waste. The advantages of this process are in the proper disposal of this waste and energy generation. Fast pyrolysis of the rice husk was carried out in temperatures of 400-600°C. This work aims to evaluate the influence of temperature on yield and product composition of the gas, bio-oil, and char. The yield of bio-oil proved to be efficient (62 wt.% at 450°C) due to the high heat transfer and mass, as well as the residence time in the reactor. In addition, bio-oil production decreases slightly due to increased gas yield (1 to 15 wt.%) as the temperature increases in the range of 400-600°C, with the composition being severely affected, i.e., The concentration of CO increases and that of CO2 decreases. In addition, a slight increase in the concentration of CH4 and C2-C4 hydrocarbons occurs with increasing temperature. The yield of char at 400°C and 600°C was 41.14-34.77 wt.%, respectively, corresponding to a decrease of 16 wt.%. The char obtained is of low heating value but has good features for the production of active carbons and amorphous silica. These results demonstrate the efficiency and optimization of the fast pyrolysis of rice husk, in order to obtain biooil and char.


2020 ◽  
Vol 841 ◽  
pp. 150-154
Author(s):  
Thirada Rodseanglung ◽  
Tanakorn Ratana ◽  
Monrudee Phongaksorn ◽  
Sabaithip Tungkamani

This research focus on catalytic hydrotreating of Jatropha Bio-oil derived fast pyrolysis into biofuel was investigated to determine the effects of the supported type (Al2O3 TiO2 and Al2O3-TiO2 mix-oxide) and of the variables temperature (300-340 °C). The synthesized catalysts were prepared by sol-gel method for support and wet-impregnation with solution promoter on support, and characterization by BET NH3-TPD XRD and NO-TPD for active site analysis of catalysts. The reaction was carried out in a Parr batch reactor under H2 atmosphere about 50 bar for 2 h. The catalytic activity was evaluated for % fatty acid conversion (%FFA), %HDO, %selective to paraffin/olefin products. The results showed that the CMA gave the %FFA is highest, but low selective products, then the CMT gave the % HDO high than CMA, while the mixed-oxide were proving the %HDO, %FFA conversion and % selective is increasing because the TiO2 incorporated with Al2O3 effect to increase the amount of rim site, it’s active site for HYD partway.


Author(s):  
William D. Sonnek ◽  
Stephen P. Gent ◽  
Gregory J. Michna

Fast pyrolysis is one method of creating bio-oil from biomass such as native prairie grasses, corn stover, and other organic commercial and industrial byproducts. In this study, fast pyrolysis of Brassica carinata meal, or simply carinata meal, was performed in an auger-type reactor. The bio-oil produced in the reactor was collected and analyzed to determine the effects of reactor and condenser temperatures on the properties of the bio-oil produced. Five reactor temperatures and two condenser temperatures were investigated in this research. The rheological properties of the bio-oil samples were analyzed, water content was determined with the Karl Fisher method, energy content was measured with a bomb calorimeter, and acidity was determined using a total acid titration test. The aging characteristics of the bio-oil were also investigated at seven days, fourteen days, and twenty-eight days after the oil was created to determine what effect, if any, time had on the its properties. Preliminary results indicate that any reactor temperature above 500°C produces bio-oils of similar composition, although with changes in yield. In addition, the short-term aging results of the bio-oils have shown insignificant changes in total acid number, water content, and energy content.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2747-2755
Author(s):  
Yan Luo ◽  
Xuan Zhou ◽  
Hui Pu ◽  
Hongling Pan ◽  
Xiao Feng ◽  
...  

Raw bio-oil was pretreated and tested for hydrodeoxygenation (HDO) using three types of the commercial catalysts (HT-36, HT2300, and HT951T) to improve physio-chemical properties and enhance hydrocarbon yields. The three catalysts prompted different levels of hydrodeoxygenation, and the organic phase products (OLPs) yields were 25.30, 27.83, and 13.05 wt%, respectively. Moreover, OLPs had lower water content, total acid numbers (TAN), and O content as well as higher heating value (HHV), C, and H contents. For the three catalysts, HT-36 had the best HDO effects, resulting in 34.8% hydrocarbon production with improved HHV, water content value and TAN as well as element contents. The different level of HDO depended on the catalyst components, structure, and morphology. This research is beneficial for the selection and preparation of effective catalysts for bio-oil upgrading.


2019 ◽  
Vol 13 (4) ◽  
pp. 702-717 ◽  
Author(s):  
Sainab Omar ◽  
Suzanne Alsamaq ◽  
Yang Yang ◽  
Jiawei Wang

Abstract The work studied a non-catalytic upgrading of fast pyrolysis bio-oil by blending under supercritical conditions using methanol, ethanol and isopropanol as solvent and hydrogen donor. Characterisation of the bio-oil and the upgraded bio-oils was carried out including moisture content, elemental content, pH, heating value, gas chromatography-mass spectrometry (GCMS), Fourier transform infrared radiation, 13C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis to evaluate the effects of blending and supercritical reactions. The GCMS analysis indicated that the supercritical methanol reaction removed the acids in the bio-oil consequently the pH increased from 2.39 in the crude bio-oil to 4.04 after the supercritical methanol reaction. The ester contents increased by 87.49% after the supercritical methanol reaction indicating ester formation could be the major deacidification mechanism for reducing the acidity of the bio-oil and improving its pH value. Simply blending crude bio-oil with isopropanol was effective in increasing the C and H content, reducing the O content and increasing the heating value to 27.55 from 17.51 MJ·kg−1 in the crude bio-oil. After the supercritical isopropanol reaction, the heating value of the liquid product slightly further increased to 28.85 MJ·kg−1.


2017 ◽  
Vol 4 ◽  
pp. 2-16
Author(s):  
Matthew Charles Stokes Hughes ◽  
Lachlan Mcfall ◽  
Matthew Christiansen ◽  
Nicholas Zepernick

Pyrolysis is a viable method of extracting combustible fuels as gases or liquids from various, high carbon and hydrogen containing biomaterials. This Meta-study attempts to find the ideal combinations of processes for maximising biofuel output by comparing a range of biomaterials (cotton stalks, algae and peach scraps), put through the two primary methods of pyrolysis, through analysis of reactor type, Temperature, particle size and lower heating value achieved from biofuel output. It is proposed that the fast pyrolysis of Algae in a Fluidized bed reactor at a temperature of 550°C is the optimum combination of parameters for maximising biofuel output in terms of bio-oil yield and lower heating value (LHV) in kJ/kg.


Sign in / Sign up

Export Citation Format

Share Document