scholarly journals Long Noncoding RNAs Regulate the Inflammatory Responses of Macrophages

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Qing Zhao ◽  
Gaozong Pang ◽  
Lin Yang ◽  
Shu Chen ◽  
Ruiyao Xu ◽  
...  

Long noncoding RNAs (lncRNAs) are defined as transcripts with more than 200 nucleotides that have little or no coding potential. In recent years, due to the development of next-generation sequencing (NGS), a large number of studies have revealed that lncRNAs function as key regulators to maintain immune balance and participate in diverse physiological and pathological processes in the human body. Notably, overwhelming evidence suggests that lncRNAs can regulate innate immune responses, the differentiation and development of immune cells, inflammatory autoimmune diseases, and many other immunological processes with distinct regulatory mechanisms. In this review, we summarized the emerging roles of lncRNAs in macrophage development and polarization. In addition, the potential value of lncRNAs as diagnostic biomarkers and novel therapeutic targets for the treatment of aberrant immune responses and inflammatory diseases are discussed.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Young-Su Yi ◽  
Young-Jin Son ◽  
Chongsuk Ryou ◽  
Gi-Ho Sung ◽  
Jong-Hoon Kim ◽  
...  

Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Minjie Huang ◽  
Jie Dong ◽  
Haikun Guo ◽  
Minghui Xiao ◽  
Deqian Wang

Abstract Background Dinotefuran (CAS No. 165252–70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. Results Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-β (TGF-β) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. Conclusion This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Se Eun Byeon ◽  
Young-Su Yi ◽  
Jueun Oh ◽  
Byong Chul Yoo ◽  
Sungyoul Hong ◽  
...  

Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.


2021 ◽  
Author(s):  
David Schneberger ◽  
Upkardeep Singh Pandher ◽  
Brooke Thompson ◽  
Shelley Kirychuk

Abstract Workplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 at the ASHRAE recommended limit (1000 ppm) as well as the EPA 8hr time weighted average limit (5000 ppm) on lung innate immune responses in mice with exposure to inflammatory lipopolysaccharide and organic dust. Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (approx. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.


2018 ◽  
Vol 19 (10) ◽  
pp. 3003 ◽  
Author(s):  
Debora Giordano ◽  
Claudio Pinto ◽  
Luca Maroni ◽  
Antonio Benedetti ◽  
Marco Marzioni

Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.


2020 ◽  
Author(s):  
Tobias Vahsen ◽  
Laura Zapata ◽  
Rodrigo Guabiraba ◽  
Elise Melloul ◽  
Nathalie Cordonnier ◽  
...  

Abstract Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1β, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease. Lay Summary Aspergillus fumigatus infection may cause mortality in poultry, depending on species sensitivity. This study confirms the earlier activation of chickens’ pro-inflammatory effectors to control Aspergillus dissemination, whereas turkeys’ immune response enables the exacerbation of lung lesions.


2019 ◽  
Vol Volume 11 ◽  
pp. 6175-6184 ◽  
Author(s):  
Ziwei Yang ◽  
Yanfei Sun ◽  
Rongfeng Liu ◽  
Yanyan Shi ◽  
Shigang Ding

Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


Sign in / Sign up

Export Citation Format

Share Document