scholarly journals Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Fatma Mohamed Ghoneim ◽  
Salwa Mohamed Abo-Elkhair ◽  
Ayman Zaky Elsamanoudy ◽  
Dalia A. Shabaan

Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological and molecular levels and to study the ameliorative effect of fisetin. Forty adult female albino rats were divided into four groups (10 each): two control groups, the reserpine-induced fibromyalgia group, and the fisetin-treated group. The carotid arteries and brains of the animals were dissected. Frozen tissue samples were used for total RNA extraction and qPCR analysis of eNOS, caspase-3, Bcl-2, LC-3, BECN-1, CHOP, and TNF-α expression. Histological, immunohistochemical (eNOS), and ultrastructure studies were conducted. The carotid arteries revealed excessive autophagy and endothelial, vascular, and apoptotic changes. The cerebral cortex showed similar findings apart from endoplasmic reticulum stress. Additionally, there was decreased gene expression of eNOS and Bcl-2 and increased expression of caspase-3, LC-3, BECN-1, CHOP, and TNF-α. In the fisetin-treated rats, improvements in the histological and molecular results were detected. In conclusion, oxidative stress, enhanced apoptosis, and excessive autophagy are fundamental pathophysiologic mechanisms of reserpine-induced fibromyalgia. Moreover, fisetin has an ameliorative effect against fibromyalgia.

2021 ◽  
Vol 14 ◽  
Author(s):  
Salwa A. Ibrahim ◽  
Seham A. Abdel-Gaber ◽  
Mohamed A. Ibrahim ◽  
Entesar F. Amin ◽  
Rehab K. Mohammed ◽  
...  

Background and aim: Liver IR is a frequent clinical complication with high morbidity and mortality. The present study evaluated the possible protective effect of sodium hydrosulfide (NaHS), a H2S donor, in IR-induced hepatic injury and explored the mechanisms of actions of the investigated drug. Methods: Male albino rats (200-230 g) were divided into the following groups: group 1:Sham-operated non treated rats, group 2: IR non treated rats, group 3: L-NNA + IR rats, group 4: NaHS + IR rats, group 5: L-NNA + NaHS + IR rats. Blood samples were collected for ALT determination. Liver tissue samples were used for the assessment of GPx, catalase, SOD, MDA, total nitrites and TNF-α. Parts from the liver were fixed in 10% formalin solution for histopathological examination and immunohistochemical examination of iNOS, eNOS and caspase-3. Results: NaHS protected the liver against IR. This hepatoprotection was associated with normalization of antioxidant enzyme activity and decrease in hepatic MDA, TNF-α and expression of caspase-3 and iNOS. Conclusion: NaHS is hepatoprotective in IR injury. The hepatoprotective effects of NaHS are associated with antioxidant, anti-inflammatory and antiapoptotic effects. These effects are probably mediated via NO modulation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Moradi ◽  
A Faramarzi ◽  
N Goodarzi ◽  
A H Hashemian ◽  
H Cheraghi ◽  
...  

Abstract Study question Does exogenous melatonin (MLT) attenuate BEP-induced damage in testicular cells and spermatogenesis in a dose-dependent manner? Summary answer Melatonin protected the testes against BEP-induced testis damage through ameliorating nitro-oxidative stress, apoptosis, and inflammation. However, there was no significant difference between melatonin-treated groups. What is known already Recently, the prevalence of testicular cancer (TC), accounting for the most common cancer among young people of reproductive age (15–40 years), has risen internationally. BEP chemotherapy has increased the 5-year survival rate of TC patients at all stages of testicular germ cell tumors to 90–95%. However, BEP creates a high incidence of male infertility and even long-term genotoxic effects, which emerges as a critical health issue. Melatonin is a well-known potent antioxidant with widespread clinical applications that recently has been giving increasing attention to its role in male sub/infertility. Study design, size, duration 60 Adult male Wistar rats were randomly assigned to six groups (n = 10/group). Group 1, 3, and 4 were injected with vehicle, 10 and 20 mg/kg of melatonin, respectively. Other groups received one cycle of bleomycin, etoposide, and cisplatin for a total of 3 weeks with or without melatonin. Melatonin administration started daily one week before BEP initiation continued on days 2, 9, and 16; and one week after the completion of the BEP cycle. Participants/materials, setting, methods Bodyweight, testes weight, Sperm parameters (count, motility, viability, and morphology), testosterone hormone level, testicular histopathology, stereological parameters, testicular level of malondialdehyde (MDA), nitric oxide (NO), and total antioxidant capacity (TAC), the expression of Bcl–2, Bax, Caspase–3, p53, and TNF-α (Real-time PCR and immunohistochemistry) were evaluated at the end of the study (day 35). Main results and the role of chance Our findings showed that melatonin restores the BEP-induced reduction in the body and testes weight (P<.05). the evaluation of quantitative analysis of the testes stereological procedures, QRT-PCR examination and immunohistochemical (IHC) staining revealed that melatonin reverses the BEP-induced impaired spermatogenesis (P<.05). Furthermore, melatonin rectifies BEP-induced disturbance on sperm count, motility, viability, and morphology. The testosterone level in the BEP-treated group was decreased significantly by comparison with the control group (P<.01). By contrast, co-administration of 10 and 20 mg/kg of melatonin could enhance the serum testosterone level significantly (P<.05). Moreover, melatonin enhanced the antioxidant status of the testis by elevating TAC and ameliorating MDA and NO levels. More notably, QRT-PCR examination indicated that melatonin therapy suppressed BEP-induced apoptosis by modulating apoptosis-associated genes such as Bcl–2, Bax, Caspase–3, p53 in the testis (P<.01). Besides, Co-administration of 10 and 20 mg/kg of melatonin with BEP regimen decreased significantly the population of p53 (54.21 ±6.18% and 51.83±8.45, respectively) and TNF-α positive cells (42.91±9.92% and 33.57±2.97, respectively) by comparison to the BEP group. Also, melatonin with low and high doses could enhance the expression of Bcl–2 protein in spermatogenic cells line (59.19±10.18%, 63.08±5.23, respectively) compared to the BEP-treated group. Limitations, reasons for caution Owing to limited laboratory facilities we were not able to perform further studies to verify the mechanism of melatonin in the specific targets by using transfection technique and transgenic. Wider implications of the findings: These findings can draw attention to the clinical application of melatonin and also suggest that melatonin may be an attractive agent for attenuating chemotherapy-associated male sub/infertility. This indolamine also may shorten the fertility recovery period in patients undergoing chemotherapy with the BEP regimen. Trial registration number N/A


2017 ◽  
Vol 43 (2) ◽  
pp. 644-659 ◽  
Author(s):  
Azza H. Abd Elwahab ◽  
Basma K. Ramadan ◽  
Mona F. Schaalan  ◽  
Amina M. Tolba

Background: Non-alcoholic fatty liver disease (NAFLD) is one of the alarmingly rising clinical problems in the 21st century with no effective drug treatment until now. Taurine is an essential amino acid in humans that proved efficacy as a non-pharmacological therapy in a plethora of diseases; however, its impact on NAFLD remains elusive. The aim of the current study is to evaluate the protective mechanism of taurine in experimental steatohepatitis induced by junk food given as cafeteria-diet (CAF-D) in male albino rats. Methods: Forty adult male albino rats of local strain between 8-10 weeks old, weighing 150 ± 20 g, were divided into four equal groups: Group I (control group), Group II (Taurine group), Group III (CAF-D for 12 weeks) and Group IV (CAF-D +Taurine). CAF-D was given in addition to the standard chow for 12 weeks, where each rat was given one piece of beef burger fried in 15 g of sunflower oil, one teaspoonful of mayonnaise, and one piece of petit pan bread, weighing 60g/ piece. In the serum, liver function tests; ALT, AST, ALP, GGT and the lipid profile; TG, TC, HDL-C added to reduced glutathione (GSH) were assessed colorimetrically, while fibroblast growth factor (FGF)-21, adiponectin & interleukin (IL)-6 via ELISA. The same technique was used for the assays of the hepatic levels of FGF-21, silent information regulator (SIRT1), malondialdehyde (MDA),IL-10, tumor necrosis factor-α (TNF-α) as well as the apoptotic markers; caspase-3 and B-cell lymphoma (Bcl-2). Results: The cafeteria-diet induced steatohepatitis was reflected by significantly increased body and liver weight gain, elevation of liver enzymes; ALT, AST, ALP and GGT added to the dyslipidemic panel, presented as increased TC, TG, LDL-C and decreased HDL-C levels. The steatosis-induced inflammatory milieu, marked by elevated serum levels of FGF-21, IL-6, hepatic TNF-α, as well as reduced IL-10 and adiponectin, was associated with steatosis- induced hepatic oxidative stress, reflected by increased hepatic MDA and decreased GSH levels, along with stimulated caspase-3 and decline in BcL-2 hepatic levels. These pathological disturbances were significantly ameliorated by taurine supplementation and evidenced histopathologically. The cross talk between hepatic FGF-21 and SIRT1 and their association to the induced perturbations are novel findings in this study. Taurine's efficacy in restoration of hepatic structure and function is partially via the increase in SIRT1 and associated reduction of FGF-21. Conclusion: The findings of the current study prove the protective role of taurine in NAFLD via a novel role in the amelioration of FGF-21/ SIRT1 axis, which could be considered a new therapeutic target.


2019 ◽  
Author(s):  
Randa H. Ainosah ◽  
Magda M. Hagras ◽  
Sameer Alharthi ◽  
Omar I. Saadah

Abstract Background: Cholestasis is a condition in which there is impairment of bile flow from the liver to the small bowel. It is a common complication of bacterial infection and sepsis. Treatment is usually directed towards the eradication of bacterial infection and consequences of sepsis. Ursodeoxycholic acid (UDCA) has been under investigation as a possible therapeutic option for the treatments of sepsis-associated cholestasis.Methods: Sixty male albino rats (weighing 100–150g) were subjected to daily doses of UDCA (100 mg/kg, p.o.) for 10 days before or after lipopolysaccharides (LPS) induction of cholestasis. Then, the following liver enzyme activity was assessed: plasma aspartate transferase (AST), plasma alkaline transferase (ALT), plasma alkaline phosphatase (ALP), total bilirubin (TBIL). Hepatocyte apoptosis and immunomodulatory activity were assessed by flow cytometric analysis. Plasma pro-inflammatory cytokines (TNF-, IL-1 and IL-4) were measured by ELISA. Liver histology changes were assessed by hematoxylin and eosin (H&E) staining.Results: Our results showed that LPS-induced cholestasis resulted in a significant rise in the TBIL and liver enzymes including GGT, ALP, AST, and hepatocytes death. UDCA improves serum liver chemistries and halts bile acid cytotoxicity when it was used either as a treatment or prevention, compared to the LPS group. Moreover, UDCA has immunomodulatory properties: the effect of UDCA on the percentage of natural killer (NK) cells did not change in either the treatment or prevention group when compared to LPS induced cholestasis. However, significant decrease in the CD3 has been found in the treatment group as compared to the LPS group, and an unexpected increase in the prevention group compared to the LPS treated group. UDCA failed to ameliorate the increase in plasma TNF-α concentration in the treatment group. On the other hand, UDCA caused reduction in plasma TNF-α in the prevention group. We also found significant reduction in the liver tissue apoptosis in the UDCA treated groups. Conclusion: Prophylactic treatment and treatment with UDCA appear to exert a beneficial effect against the damaging effect of hydrophobic bile acids by LPS-induced secretary failure. This involved multiple mechanisms of action.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yifan Zhang ◽  
Jie Ding ◽  
Yiru Wang ◽  
Xiaoteng Feng ◽  
Min Du ◽  
...  

Guanxinkang decoction (GXK), a traditional Chinese medicinal drug, is used to treat cardiovascular disease. The aim of the study was to investigate the effects of GXK on inflammation in LDLR−/− mice and RAW264.7 cells. Fed with high fat diet for 12 weeks, the mice were randomly divided into six groups, then administered with oral 0.9% saline or GXK (7.24, 14.48, and 28.96 g/kg) or Atorvastatin (1.3 mg/kg) for 12 weeks. RAW 264.7 cells were induced with ox-LDL or ox-LDL plus different concentrations of GXK (1.25, 2.5, and 5 μg/ml), or ox-LDL plus GXK plus MAPKs activators. Serum lipid profiles and inflammatory cytokines were detected by ELISA, gene expression by RT-qPCR, plaque sizes by Oil Red O, α-SMA, caspase 3, NF-κB p65 and TNF-α production by immunofluorescence staining, and protein expression by Western Blot. The phagocytic ability of cells was determined by neutral red uptake assay. Efferocytosis-related proteins (AML, MERTK, TYRO3 and MFGE8) and MAPKs pathways were detected by Western Blot. Compared to mice fed with high fat diet, the mice with GXK showed lower cholesterol, triglyceride, low-density lipoprotein cholesterol, IL-1β, IL-6, and TNF-α, smaller plaque sizes, higher α-SMA, and lower caspase 3 and NF-κB p65 in aortic roots. RAW264.7 cells treated with ox-LDL plus GXK had lower IL-1β, IL-6, and TNF-α. GXK also increased the phagocytic ability of cells. High levels of AML, MERTK, TYRO3 and MFGE8, and decreased levels of iNOS, VCAM-1, LOX-1 and MCP-1, and phosphorylation of ERK1/2, JNK, p38, and NF-κB were detected in GXK-treated group. MAPKs activators reversed the effects of GXK in repressing inflammation and promoting phagocytosis. These results suggested that GXK could attenuate atherosclerosis and resolve inflammation via efferocytosis and MAPKs signaling pathways in LDLR−/− mice and RAW264.7 cells.


2021 ◽  
Vol 43 (3) ◽  
pp. 1741-1755
Author(s):  
Nancy S. Younis ◽  
Heba S. Elsewedy ◽  
Tamer M. Shehata ◽  
Maged E. Mohamed

Objectives: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. Methods: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). Results: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1β, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. Conclusion: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.


Author(s):  
Katarina Mihajlovic ◽  
Isidora Milosavljevic ◽  
Jovana Jeremic ◽  
Maja Savic ◽  
Jasmina Sretenovic ◽  
...  

Ruthenium(II) complexes offer the potential for lower toxicity compared to platinum(II) complexes. Our study aimed to compare cardiotoxicity of [Ru(Cl-tpy)(en)Cl][Cl], [Ru(Cl-tpy)(dach)Cl][Cl], [Ru(Cl-tpy)(bpy)Cl][Cl], cisplatin and saline through assessment of redox status and relative expression of apoptosis-related genes. A total of 40 Wistar albino rats were divided into five groups. Ruthenium groups received intraperitoneally single dose of complexes (4 mg/kg/week) for 4-weeks period; cisplatin group received cisplatin (4 mg/kg/week) and control group received saline (4 mL/kg/week) in the same manner as ruthenium groups. In collected blood and heart tissue samples, spectrophotometrically determination of oxidative stress biomarkers was performed. The relative expression of apoptosis-related genes (Bcl-2, Bax, and caspase-3) in hearts was examined by RT-PCR. Our results showed that systemic and cardiac pro-oxidative markers (TBARS and NO2-) were significantly lower in ruthenium groups compared to cisplatin group, while concentrations of antioxidative parameters (CAT, SOD, and GSSG) were significantly higher. Ruthenium administration led to significantly lower gene expression of Bax and caspase-3 compared to cisplatin-treated rats, while Bcl-2 remained unchanged. Applied ruthenium complexes have less pronounced potential for induction of oxidative stress-mediated cardiotoxicity compared to cisplatin. These findings may help for future studies that should clarify the mechanisms of cardiotoxicity of ruthenium-based metallodrugs.


2019 ◽  
Vol 44 (4) ◽  
pp. 452-461
Author(s):  
Zahide Cavdar ◽  
Cemre Ural ◽  
Ayse Kocak ◽  
Sevki Arslan ◽  
Sibel Ersan ◽  
...  

Abstract Objective This study aimed to investigate the renoprotective effects of paricalcitol, a synhetic vitamin D analog, through its possible roles on p38 MAPK and PI3K/Akt signaling pathways to prevent oxidative stress, inflammation and apoptosis during renal I/R. Materials and methods Total 20 kidney tissues of sham (n = 6), subjected to renal I/R bilaterally for 45 min ischemia followed by 24 h reperfusion (n = 7) and paricalcitol (0.3 μg/kg, ip) pretreated Wistar albino rats (n =7) were used in this study. Interstitial inflammation and active caspase-3 expression were evaluated histologically. TNF-α, IL-1β, kidney injury molecule-1 (KIM-1), MDA and SOD activity in kidneys were analysed biochemically. Furthermore, activation of p38 MAPK, PI3K/Akt signaling pathways and NFκB p65 were evaluated by western blot. Results Paricalcitol pretreatment significantly reduced interstitial inflammation during renal I/R, which was consistent with decreased tumor TNF-α, IL-1β, active caspase-3 and KIM-1 expression. Paricalcitol also reduced MDA level and attenuated the reduction of SOD activity in the kidney during I/R. Moreover, paricalcitol could suppress the p38 MAPK and NFκB p65, and also activate PI3K/Akt signaling pathway during renal I/R. Conclusion All these findings indicate that paricalcitol may be an effective practical strategy to prevent renal I/R injury.


Author(s):  
Hasan Akduman ◽  
Cüneyt Tayman ◽  
Ufuk Çakir ◽  
Esra Çakir ◽  
Dilek Dilli ◽  
...  

Background/aim: We aimed to ascertain the effects of astaxanthin on the lungs of rat pups with bronchopulmonary dysplasia (BPD) induced by hyperoxia and lipopolysaccharide (LPS). Materials and methods: Forty-two newborn Wistar rats born to spontaneous pregnant rats were divided into three groups: Hyperoxia (95% O2) + lipopolysaccharide (LPS) group, hyperoxia + LPS + astaxhantin group and control: no treatment group (21% O2). Pups in the hyperoxia + LPS + astaxanthin group were given 100 mg/kg/day oral astaxanthin from the first day to the fifth day. Histopathologic and biochemical evaluations including glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS), lipid hydroperoxide (LPO), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), myeloperoxidase (MPO), total thiol, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL1β) and caspase-3 activities were performed. Results: A better survival rates and weight gain were demonstrated in the hyperoxia + LPS + astaxanthin group (p <0.001). In the histopathologic evaluation, the severity of lung damage was significantly reduced in the hyperoxia+LPS+astaxanthin group, as well as decreased apoptosis (ELİSA for caspase-3) (p <0.001). The biochemical analyses of lung tissues TAS, GSH, Total thiol levels were significantly higher in the astaxanthin treated group compared to hyperoxia + LPS group (p <0.05) while TOS, AOPP, LPO, 8-OHdG, MPO levels were significantly lower (p <0.001). In addition, unlike the hyperoxia + LPS group, TNF-α and IL-1β levels in lung tissue were significantly lower in the astaxanthin-treated group (p <0.001). Conclusion: Astaxanthin was shown to reduce lung damage caused by inflammation and hyperoxia with its antiinflammatory, anti-oxidant, anti-apoptotic properties and to protect the lung from severe destruction.


2019 ◽  
Vol 19 (8) ◽  
pp. 1141-1147 ◽  
Author(s):  
Ozlem Ozmen ◽  
Senay Topsakal

Objective: The aim of this study was to examine pancreatic pathology and the prophylactic effects of pregabalin in lipopolysaccharide (LPS) induced sepsis model in aged rats. Methods: Twenty-four female, one-year-old, Wistar Albino rats were assigned to three groups; Group I (control), Group II (study group: 5mg/kg LPS intraperitoneal, single dose) and Group III(treatment group: 5mg/kg LPS+30 mg/kg oral pregabalin one hour before LPS). Animals were sacrificed by exsanguination 6 hours after LPS administration. Blood and pancreatic tissue samples were collected for biochemical, pathological, and immunohistochemical analyses. Results: LPS caused increases in serum amylase and lipase level but led to a reduction in glucose levels. Following histopathological analysis, numerous neutrophil leucocyte infiltrations were observed in vessels and pancreatic tissues. Increased caspase-3 expression was observed in both the endocrine and exocrine pancreas in the LPS group. Similarly, IL-6, caspase-3 (Cas-3), inducible nitric oxide synthase (iNOS), granulocyte colony-stimulating factor (G-CSF) and serum amyloid-A (SAA) expressions were increased by LPS. Pregabalin improved biochemical, histopathological, and immunohistochemical findings. Conclusion: This study showed that LPS causes pathological findings in the pancreas, but pregabalin has ameliorative effects in aged rats with sepsis. Cas-3, IL-6, iNOS, G-CSF, and SAA all play pivotal roles in the pathogenesis of LPS-induced pancreatic damage.


Sign in / Sign up

Export Citation Format

Share Document