scholarly journals Effects of Enteric Environmental Modification by Coffee Components on Neurodegeneration in Rotenone-Treated Mice

Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 221 ◽  
Author(s):  
Ikuko Miyazaki ◽  
Nami Isooka ◽  
Kouichi Wada ◽  
Ryo Kikuoka ◽  
Yoshihisa Kitamura ◽  
...  

Epidemiological studies have shown that coffee consumption decreases the risk of Parkinson’s disease (PD). Caffeic acid (CA) and chlorogenic acid (CGA) are coffee components that have antioxidative properties. Rotenone, a mitochondrial complex I inhibitor, has been used to develop parkinsonian models, because the toxin induces PD-like pathology. Here, we examined the neuroprotective effects of CA and CGA against the rotenone-induced degeneration of central dopaminergic and peripheral enteric neurons. Male C57BL/6J mice were chronically administered rotenone (2.5 mg/kg/day), subcutaneously for four weeks. The animals were orally administered CA or CGA daily for 1 week before rotenone exposure and during the four weeks of rotenone treatment. Administrations of CA or CGA prevented rotenone-induced neurodegeneration of both nigral dopaminergic and intestinal enteric neurons. CA and CGA upregulated the antioxidative molecules, metallothionein (MT)-1,2, in striatal astrocytes of rotenone-injected mice. Primary cultured mesencephalic or enteric cells were pretreated with CA or CGA for 24 h, and then further co-treated with a low dose of rotenone (1–5 nM) for 48 h. The neuroprotective effects and MT upregulation induced by CA and CGA in vivo were reproduced in cultured cells. Our data indicated that intake of coffee components, CA and CGA, enhanced the antioxidative properties of glial cells and prevents rotenone-induced neurodegeneration in both the brain and myenteric plexus.

2020 ◽  
Vol 22 (1) ◽  
pp. 107
Author(s):  
Katarzyna Socała ◽  
Aleksandra Szopa ◽  
Anna Serefko ◽  
Ewa Poleszak ◽  
Piotr Wlaź

Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer’s disease, Parkinson’s disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.


2015 ◽  
Vol 36 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Qian Yu ◽  
Zhihong Lu ◽  
Lei Tao ◽  
Lu Yang ◽  
Yu Guo ◽  
...  

Background/Aims: Stroke is among the top causes of death worldwide. Neuroprotective agents are thus considered as potentially powerful treatment of stroke. Methods: Using both HT22 cells and male Sprague-Dawley rats as in vitro and in vivo models, we investigated the effect of NaHS, an exogenous donor of H2S, on the focal cerebral ischemia-reperfusion (I/R) induced brain injury. Results: Administration of NaHS significantly decreased the brain infarcted area as compared to the I/R group in a dose-dependent manner. Mechanistic studies demonstrated that NaHS-treated rats displayed significant reduction of malondialdehyde content, and strikingly increased activity of superoxide dismutases and glutathione peroxidase in the brain tissues compared with I/R group. The enhanced antioxidant capacity as well as restored mitochondrial function are NaHS-treatment correlated with decreased cellular reactive oxygen species level and compromised apoptosis in vitro or in vivo in the presence of NaHS compared with control. Further analysis revealed that the inhibition of PARP-1 cleavage and AIF translocation are involved in the neuroprotective effects of NaHS. Conclusion: Collectively, our results suggest that NaHS has potent protective effects against the brain injury induced by I/R. NaHS is possibly effective through inhibition of oxidative stress and apoptosis.


2007 ◽  
Vol 85 (8) ◽  
pp. 823-830 ◽  
Author(s):  
J. Shearer ◽  
E.A. Sellars ◽  
A. Farah ◽  
T.E. Graham ◽  
D.H. Wasserman

Epidemiological studies indicate that regular coffee consumption reduces the risk of developing type 2 diabetes. Despite these findings, the biological mechanisms by which coffee consumption exerts these effects are unknown. The aim of this study was twofold: to develop a rat model that would further delineate the effects of regular coffee consumption on glucose kinetics, and to determine whether coffee, with or without caffeine, alters the actions of insulin on glucose kinetics in vivo. Male Sprague–Dawley rats were fed a high-fat diet for 4 weeks in combination with one of the following: (i) drinking water as placebo (PL), (ii) decaffeinated coffee (2 g/100 mL) (DC), or (iii) alkaloid caffeine (20 mg/100 mL) added to decaffeinated coffee (2 g/100 mL) (CAF). Catheters were chronically implanted in a carotid artery and jugular vein for sampling and infusions, respectively. Recovered animals (5 days postoperative) were fasted for 5 h before hyperinsulinemic-euglycemic clamps (2 mU·kg–1·min–1). Glucose was clamped at 6 mmol/L and isotopes (2-deoxy-[14C]glucose and [3-3H]glucose) were administered to obtain indices of whole-body and tissue-specific glucose kinetics. Glucose infusion rates and measures of whole-body metabolic clearance were greater in DC than in PL or CAF, indicating increased whole-body insulin sensitivity. As the only difference between DC and CAF was the addition of alkaloid caffeine, it can be concluded that caffeine antagonizes the beneficial effects of DC. Given these findings, decaffeinated coffee may represent a nutritional means of combating insulin resistance.


2020 ◽  
Author(s):  
Laura Casares ◽  
Juan Diego Unciti ◽  
Maria Eugenia Prados ◽  
Diego Caprioglio ◽  
Maureen Higgins ◽  
...  

ABSTRACTOxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Activation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabinoid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. This new CBD derivative provides neuroprotection in cell models of relevance to Huntington’s disease, setting the basis for further developments in vivo.


2020 ◽  
Vol 33 (4) ◽  
pp. 191-196
Author(s):  
Omotayo B. Ilesanmi ◽  
Obade Efe ◽  
Temitope T. Odewale ◽  
Frances O. Atanu ◽  
Esther F. Adeogun ◽  
...  

Abstract We earlier reported the protective effect of Solanum dasyphyllum against cyanide neurotoxicity. In furtherance to this, we investigated the protective effect of S. dasyphyllum against rotenone, a chemical toxin that causes brain-related diseases. Mitochondria fraction obtained from the brain of male Wistar rats was incubated with various solvents (hexane, dichloromethane, ethylacetate, and methanol) extracts of S. dasyphyllum before rotenone exposure. Mitochondria respiratory enzymes (MRE) were evaluated along with markers of oxidative stress. The inhibition of MRE by rotenone was reversed by treatment with various fractions of S. dasyphyllum. The oxidative stress induced by rotenone was also reversed by fractions of S. dasyphyllum. In addition, the ethylacetate fraction of S. dasyphyllum was most potent against rotenone-induced neurotoxicity. In conclusion, S. dasyphyllum is rich in active phytochemicals that can prevent some neurotoxic effects of rotenone exposure. Further study can be done in an in vivo model to substantiate our results.


J ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 116-127
Author(s):  
Pengxiang Zhu ◽  
Masahiro Sakanaka

Red ginseng, as an effective herbal medicine, has been traditionally and empirically used for the treatment of neuronal diseases. Many studies suggest that red ginseng and its ingredients protect the brain and spinal cord from neural injuries such as ischemia, trauma, and neurodegeneration. This review focuses on the molecular mechanisms underlying the neuroprotective effects of red ginseng and its ingredients. Ginsenoside Rb1 and other ginsenosides are regarded as the active ingredients of red ginseng; the anti-apoptotic, anti-inflammatory, and anti-oxidative actions of ginsenosides, together with a series of bioactive molecules relevant to the above actions, appear to account for the neuroprotective effects in vivo and/or in vitro. Moreover, in this review, the possibility is raised that more effective or stable neuroprotective derivatives based on the chemical structures of ginsenosides could be developed. Although further studies, including clinical trials, are necessary to confirm the pharmacological properties of red ginseng and its ingredients, red ginseng and its ingredients could be promising candidate drugs for the treatment of neural injuries.


2015 ◽  
Vol 90 (4) ◽  
pp. 2031-2038 ◽  
Author(s):  
Cathleen Pfefferkorn ◽  
Carsten Kallfass ◽  
Stefan Lienenklaus ◽  
Julia Spanier ◽  
Ulrich Kalinke ◽  
...  

ABSTRACTInterferon beta (IFN-β) is a key component of cellular innate immunity in mammals, and it constitutes the first line of defense during viral infection. Studies with cultured cells previously showed that almost all nucleated cells are able to produce IFN-β to various extents, but information about thein vivosources of IFN-β remains incomplete. By applying immunohistochemistry and employing conditional-reporter mice that express firefly luciferase under the control of the IFN-β promoter in either all or only distinct cell types, we found that astrocytes are the main producers of IFN-β after infection of the brain with diverse neurotropic viruses, including rabies virus, Theiler's murine encephalomyelitis virus, and vesicular stomatitis virus. Analysis of a panel of knockout mouse strains revealed that sensing of viral components via both RIG-I-like helicases and Toll-like receptors contributes to IFN induction in the infected brain. A genetic approach to permanently mark rabies virus-infected cells in the brain showed that a substantial number of astrocytes became labeled and, therefore, must have been infected by the virus at least transiently. Thus, our results strongly indicate that abortive viral infection of astrocytes can trigger pattern recognition receptor signaling events which result in secretion of IFN-β that confers antiviral protection.IMPORTANCEPrevious work indicated that astrocytes are the main producers of IFN after viral infection of the central nervous system (CNS), but it remained unclear how astrocytes might sense those viruses which preferentially replicate in neurons. We have now shown that virus sensing by both RIG-I-like helicases and Toll-like receptors is involved. Our results further demonstrate that astrocytes get infected in a nonproductive manner under these conditions, indicating that abortive infection of astrocytes plays a previously unappreciated role in the innate antiviral defenses of the CNS.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1030
Author(s):  
Satoshi Okuyama ◽  
Yoshiko Furukawa ◽  
Morio Yoshimura ◽  
Yoshiaki Amakura ◽  
Mitsunari Nakajima ◽  
...  

(1) Background: Oenothein B, a cyclic dimeric ellagitannin present in various medicinal plants, has been reported to exert diverse effects that are beneficial for the treatment and prevention of diseases, including cancer and infections. We recently showed that oenothein B also functions in the brain because its oral administration to systemic inflammatory model mice reduced inflammatory responses in the brain and suppressed abnormal behavior. (2) Results: The present in vivo results demonstrated that oenothein B activated extracellular signal-regulated kinase 2 and cAMP response element-binding protein in the brain, both of which play important roles in synaptic transmission and learning/memory in the central nervous system (CNS). (3) Conclusions: These results suggest that oenothein B exerts neuroprotective effects on the CNS by not only its anti-inflammatory activity but also by enhancing neuronal signaling pathways.


2001 ◽  
Vol 75 (18) ◽  
pp. 8742-8751 ◽  
Author(s):  
Wataru Kamitani ◽  
Yuko Shoya ◽  
Takeshi Kobayashi ◽  
Makiko Watanabe ◽  
Byeong-Jae Lee ◽  
...  

ABSTRACT The Borna disease virus (BDV) p24 phosphoprotein is an abundant protein in BDV-infected cultured cells and animal brains. Therefore, there is a possibility that binding of the p24 protein to cellular factor(s) induces functional alterations of infected neural cells in the brain. To identify a cellular protein(s) that interacts with BDV p24 protein, we performed far-Western blotting with extracts from various cell lines. Using recombinant p24 protein as a probe, we detected a 30-kDa protein in all cell lines examined. Binding between the 30-kDa and BDV p24 proteins was also demonstrated using BDV p24 affinity and ion-exchange chromatography columns. Microsequence analysis of the purified 30-kDa protein revealed that its N terminus showed complete homology with rat amphoterin protein, which is a neurite outgrowth factor abundant in the brain during development. Mammalian two-hybrid and immunoprecipitation analyses also confirmed that amphoterin is a specific target for the p24 protein in vivo. Furthermore, we showed that infection by BDV, as well as purified p24 protein in the medium, significantly decreased cell process outgrowth of cells grown on laminin, indicating the functional inhibition of amphoterin by interaction with the p24 protein. Immunohistochemical analysis revealed decreased levels of amphoterin protein at the leading edges of BDV-infected cells. Moreover, the expression of the receptor for advanced glycation end products, of which the extracellular moiety is a receptor for amphoterin, was not significantly activated in BDV-infected cells during the process of extension, suggesting that the secretion of amphoterin from the cell surface is inhibited by the binding of the p24 protein. These results suggested that BDV infection may cause direct damage in the developing brain by inhibiting the function of amphoterin due to binding by the p24 phosphoprotein.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Amaia Iriondo-DeHond ◽  
José Antonio Uranga ◽  
Maria Dolores del Castillo ◽  
Raquel Abalo

Coffee is one of the most popular beverages consumed worldwide. Roasted coffee is a complex mixture of thousands of bioactive compounds, and some of them have numerous potential health-promoting properties that have been extensively studied in the cardiovascular and central nervous systems, with relatively much less attention given to other body systems, such as the gastrointestinal tract and its particular connection with the brain, known as the brain–gut axis. This narrative review provides an overview of the effect of coffee brew; its by-products; and its components on the gastrointestinal mucosa (mainly involved in permeability, secretion, and proliferation), the neural and non-neural components of the gut wall responsible for its motor function, and the brain–gut axis. Despite in vitro, in vivo, and epidemiological studies having shown that coffee may exert multiple effects on the digestive tract, including antioxidant, anti-inflammatory, and antiproliferative effects on the mucosa, and pro-motility effects on the external muscle layers, much is still surprisingly unknown. Further studies are needed to understand the mechanisms of action of certain health-promoting properties of coffee on the gastrointestinal tract and to transfer this knowledge to the industry to develop functional foods to improve the gastrointestinal and brain–gut axis health.


Sign in / Sign up

Export Citation Format

Share Document