scholarly journals Transcription Factors Indirectly Regulate Genes through Nuclear Colocalization

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 754 ◽  
Author(s):  
Zhiming Dai

Various types of data, including genomic sequences, transcription factor (TF) knockout data, TF-DNA interaction and expression profiles, have been used to decipher TF regulatory mechanisms. However, most of the genes affected by knockout of a particular TF are not bound by that factor. Here, I showed that this interesting result can be partially explained by considering the nuclear positioning of TF knockout affected genes and TF bound genes. I found that a statistically significant number of TF knockout affected genes show nuclear colocalization with genes bound by the corresponding TF. Although these TF knockout affected genes are not directly bound by the corresponding TF; the TF tend to be in the same cellular component with the TFs that directly bind these genes. TF knockout affected genes show co-expression and tend to be involved in the same biological process with the spatially adjacent genes that are bound by the corresponding TF. These results demonstrate that TFs can regulate genes through nuclear colocalization without direct DNA binding, complementing the conventional view that TFs directly bind DNA to regulate genes. My findings will have implications in understanding TF regulatory mechanisms.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guangzhong Xu ◽  
Kai Li ◽  
Nengwei Zhang ◽  
Bin Zhu ◽  
Guosheng Feng

Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer.Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed.Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer.Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.


1992 ◽  
Vol 103 (1) ◽  
pp. 9-14 ◽  
Author(s):  
K.A. Lee

Dimeric transcription factors that bind to DNA are often grouped into families on the basis of dimerization and DNA-binding specificities. cDNA cloning studies have established that members of the same family have structurally related dimerisation and DNA-binding domains but diverge in other regions that are important for transcriptional activation. These features lead to the straightforward suggestion that although all members of a family bind to similar DNA elements, individual members exhibit distinct transcriptional effector functions. This simple view is now supported by experimental evidence from those systems that have proved amenable to study. There are however some largely unaddressed questions that concern the mechanisms that allow family members to go about their business without interference from their highly related siblings. Here I will discuss some insights from studies of the bZIP class of transcription factors.


2020 ◽  
Vol 21 (19) ◽  
pp. 7388
Author(s):  
Federica Zinghirino ◽  
Xena Giada Pappalardo ◽  
Angela Messina ◽  
Francesca Guarino ◽  
Vito De Pinto

VDACs (voltage-dependent anion-selective channels) are pore-forming proteins of the outer mitochondrial membrane, whose permeability is primarily due to VDACs’ presence. In higher eukaryotes, three isoforms are raised during the evolution: they have the same exon–intron organization, and the proteins show the same channel-forming activity. We provide a comprehensive analysis of the three human VDAC genes (VDAC1–3), their expression profiles, promoter activity, and potential transcriptional regulators. VDAC isoforms are broadly but also specifically expressed in various human tissues at different levels, with a predominance of VDAC1 and VDAC2 over VDAC3. However, an RNA-seq cap analysis gene expression (CAGE) approach revealed a higher level of transcription activation of VDAC3 gene. We experimentally confirmed this information by reporter assay of VDACs promoter activity. Transcription factor binding sites (TFBSs) distribution in the promoters were investigated. The main regulators common to the three VDAC genes were identified as E2F-myc activator/cell cycle (E2FF), Nuclear respiratory factor 1 (NRF1), Krueppel-like transcription factors (KLFS), E-box binding factors (EBOX) transcription factor family members. All of them are involved in cell cycle and growth, proliferation, differentiation, apoptosis, and metabolism. More transcription factors specific for each VDAC gene isoform were identified, supporting the results in the literature, indicating a general role of VDAC1, as an actor of apoptosis for VDAC2, and the involvement in sex determination and development of VDAC3. For the first time, we propose a comparative analysis of human VDAC promoters to investigate their specific biological functions. Bioinformatics and experimental results confirm the essential role of the VDAC protein family in mitochondrial functionality. Moreover, insights about a specialized function and different regulation mechanisms arise for the three isoform gene.


2007 ◽  
Vol 27 (8) ◽  
pp. 2919-2933 ◽  
Author(s):  
Benoit Grondin ◽  
Martin Lefrancois ◽  
Mathieu Tremblay ◽  
Marianne Saint-Denis ◽  
André Haman ◽  
...  

ABSTRACT Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1β (IL-1β) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein β (C/EBPβ). Unexpectedly, the interaction interface with PU.1 and C/EBPβ involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1β locus is occupied by PU.1 and C/EBPβ and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.


1998 ◽  
Vol 18 (7) ◽  
pp. 4089-4096 ◽  
Author(s):  
Benjamin L. Ebert ◽  
H. Franklin Bunn

ABSTRACT Molecular adaptation to hypoxia depends on the binding of hypoxia-inducible factor 1 (HIF-1) to cognate response elements in oxygen-regulated genes. In addition, adjacent sequences are required for hypoxia-inducible transcription. To investigate the mechanism of interaction between these cis-acting sequences, the multiprotein complex binding to the lactate dehydrogenase A (LDH-A) promoter was characterized. The involvement of HIF-1, CREB-1/ATF-1, and p300/CREB binding protein (CBP) was demonstrated by techniques documenting in vitro binding, in combination with transient transfections that test the in vivo functional importance of each protein. In both the LDH-A promoter and the erythropoietin 3′ enhancer, formation of multiprotein complexes was analyzed by using biotinylated probes encompassing functionally critical cis-acting sequences. Strong binding of p300/CBP required interactions with multiple DNA binding proteins. Thus, the necessity of transcription factor binding sites adjacent to a HIF-1 site for hypoxically inducible transcription may be due to the requirement of p300 to interact with multiple transcription factors for high-affinity binding and activation of transcription. Since it has been found to interact with a wide range of transcription factors, p300 is likely to play a similar role in other genes, mediating interactions between DNA binding proteins, thereby activating stimulus-specific and tissue-specific gene transcription.


2009 ◽  
Vol 191 (14) ◽  
pp. 4513-4521 ◽  
Author(s):  
Victor J. McAlister ◽  
Gail E. Christie

ABSTRACT The Serratia marcescens NucC protein is structurally and functionally homologous to the P2 Ogr family of eubacterial zinc finger transcription factors required for late gene expression in P2- and P4-related bacteriophages. These activators exhibit site-specific binding to a conserved DNA sequence, TGT-N3-R-N4-Y-N3-aCA, that is located upstream of NucC-dependent S. marcescens promoters and the late promoters of P2-related phages. In this report we describe the interactions of NucC with the P2 FETUD late operon promoter P F . NucC is shown to bind P F as a tetramer and to make 12 symmetrical contacts to the DNA phosphodiester backbone. The backbone contacts are centered on the TGT-N3-R-N4-Y-N3-aCA motif. Major groove base contacts can be seen at most positions within the ∼24-bp binding site. Minor groove contacts map to adjacent positions in the downstream half of the binding site, which corresponds to the area in which the DNA also appears to be bent by NucC binding. NucC binding provides a new example of protein-DNA interaction that is strikingly different from the DNA binding demonstrated for eukaryotic zinc-finger transcription factors.


2007 ◽  
Vol 4 (2) ◽  
pp. 1-23
Author(s):  
Amitava Karmaker ◽  
Kihoon Yoon ◽  
Mark Doderer ◽  
Russell Kruzelock ◽  
Stephen Kwek

Summary Revealing the complex interaction between trans- and cis-regulatory elements and identifying these potential binding sites are fundamental problems in understanding gene expression. The progresses in ChIP-chip technology facilitate identifying DNA sequences that are recognized by a specific transcription factor. However, protein-DNA binding is a necessary, but not sufficient, condition for transcription regulation. We need to demonstrate that their gene expression levels are correlated to further confirm regulatory relationship. Here, instead of using a linear correlation coefficient, we used a non-linear function that seems to better capture possible regulatory relationships. By analyzing tissue-specific gene expression profiles of human and mouse, we delineate a list of pairs of transcription factor and gene with highly correlated expression levels, which may have regulatory relationships. Using two closely-related species (human and mouse), we perform comparative genome analysis to cross-validate the quality of our prediction. Our findings are confirmed by matching publicly available TFBS databases (like TRANFAC and ConSite) and by reviewing biological literature. For example, according to our analysis, 80% and 85.71% of the targets genes associated with E2F5 and RELB transcription factors have the corresponding known binding sites. We also substantiated our results on some oncogenes with the biomedical literature. Moreover, we performed further analysis on them and found that BCR and DEK may be regulated by some common transcription factors. Similar results for BTG1, FCGR2B and LCK genes were also reported.


1998 ◽  
Vol 62 (3) ◽  
pp. 586-596 ◽  
Author(s):  
Richard A. Wilson ◽  
Herbert N. Arst

SUMMARY The transcriptional activator AREA is a member of the GATA family of transcription factors and mediates nitrogen metabolite repression in the fungus Aspergillus nidulans. The nutritional versatility of A. nidulans and its amenability to classical and reverse genetic manipulations make the AREA DNA binding domain (DBD) a useful model for analyzing GATA family DBDs, particularly as structures of two AREA-DNA complexes have been determined. The 109 extant mutant forms of the AREA DBD surveyed here constitute one of the highest totals of eukaryotic transcription factor DBD mutants, are discussed in light of the roles of individual residues, and are compared to corresponding mutant sequence changes in other fungal GATA factor DBDs. Other topics include delineation of the DBD using both homology and mutational truncation, use of frameshift reversion to detect regions of tolerance to mutational change, the finding that duplication of the DBD can apparently enhance AREA function, and use of the AREA system to analyze a vertebrate GATA factor DBD. Some major points to emerge from work on the AREA DBD are (i) tolerance to sequence change (with retention of function) is surprisingly great, (ii) mutational changes in a transcription factor can have widely differing, even opposing, effects on expression of different structural genes so that monitoring expression of one or even several structural genes can be insufficient and possibly misleading, and (iii) a mutational change altering local hydrophobic packing and DNA binding target specificity can markedly influence the behavior of mutational changes elsewhere in the DBD.


2021 ◽  
Vol 14 ◽  
Author(s):  
Judit Català-Solsona ◽  
Alfredo J. Miñano-Molina ◽  
José Rodríguez-Álvarez

Long-lasting changes of synaptic efficacy are largely mediated by activity-induced gene transcription and are essential for neuronal plasticity and memory. In this scenario, transcription factors have emerged as pivotal players underlying synaptic plasticity and the modification of neural networks required for memory formation and consolidation. Hippocampal synaptic dysfunction is widely accepted to underlie the cognitive decline observed in some neurodegenerative disorders including Alzheimer’s disease. Therefore, understanding the molecular pathways regulating gene expression profiles may help to identify new synaptic therapeutic targets. The nuclear receptor 4A subfamily (Nr4a) of transcription factors has been involved in a variety of physiological processes within the hippocampus, ranging from inflammation to neuroprotection. Recent studies have also pointed out a role for the activity-dependent nuclear receptor subfamily 4, group A, member 2 (Nr4a2/Nurr1) in hippocampal synaptic plasticity and cognitive functions, although the underlying molecular mechanisms are still poorly understood. In this review, we highlight the specific effects of Nr4a2 in hippocampal synaptic plasticity and memory formation and we discuss whether the dysregulation of this transcription factor could contribute to hippocampal synaptic dysfunction, altogether suggesting the possibility that Nr4a2 may emerge as a novel synaptic therapeutic target in brain pathologies associated to cognitive dysfunctions.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 56-56
Author(s):  
Irene Riz ◽  
Kristin K. Baxter ◽  
Hyo Jung Lee ◽  
Reza Behnam ◽  
Teresa S. Hawley ◽  
...  

Abstract Homeodomain proteins (homeoproteins) have long been recognized as powerful transcriptional regulators. Inappropriate expression of these transcription factors often leads to major developmental malformations or malignant transformation. The in vitro DNA binding sites of homeoproteins are short sequences that are widely distributed throughout the genome and some canonical binding sites have been shown to be functionally important at distances >20 kb away from the nearest transcription start site. In addition to DNA-binding activity, several homeoproteins have been demonstrated to interact with chromatin-modifying enzymes. For example, we and others have reported that the TLX1 homeoprotein of T-cell acute lymphoblastic leukemia (T-ALL) inhibits the PP1/PP2A serine/threonine phosphatases (I. Riz and R.G. Hawley, Oncogene 24: 5561–5575, 2005) and more recently have found that TLX1 modulates histone/transcription factor acetyltransferase CBP activity (I. Riz et al., Oncogene 26: 4115–4123, 2007). PP1/PP2A and CBP are complex molecular machines integrating diverse regulatory pathways that impact on cell survival, proliferation and differentiation outcomes. Organogenesis and malignant transformation - despite obvious differences - share a common requirement for high-order cooperativity of transcription factors and transcriptional cofactors in regulating the expression of multiple sets of genes executing cell fate shifts. Targeting key regulatory nodes in order to coordinately regulate multiple genes is a common strategy of virus induced cell-transformation: accordingly, PP1/PP2A and CBP are targeted by transforming viral proteins. The Groucho/TLE (transducin-like Enhancer-of-split) family of corepressors are another example of master regulators of cell fate; for instance, it was reported that triggering the MAPK signaling cascade inactivates TLE corepressors leading to coordinated derepression of a large number of genes involved in cell proliferation. We now demonstrate that TLX1 interferes with TLE1 repressive function. By streptavidin affinity-based precipitation of biotinylated recombinant TLX1 protein (TLX1 fused to a biotinylation peptide) we show in vivo interaction of TLX1 and TLE1 in several different cell types, including human T-ALL and neuroblastoma cells. Interaction of TLX1 with TLE1 occurs via an Engrailed homology 1 (Eh1)-like domain as documented by GST pull-down assays and laser scanning confocal microscopy. Transient transfection experiments indicate that TLX1 prevents TLE1-mediated repression of reporter genes. Furthermore, in the context of endogenous chromatin structure, TLX1 derepresses the bHLH transcription factor gene, ACSL1(HASH1), a well characterized target of the HES1/TLE1 repressor complex. The process requires direct interaction of TLX1 with TLE1 and binding of TLX1 to DNA, since a point mutation in the Eh1-like motif or deletion of the third helix of the TLX1 homeodomain abrogated the effect. Additional data to be presented suggest a long-range mechanism of transcriptional regulation by TLX1: we propose that “transcriptional activation” by TLX1 (and, by analogy, other homeoproteins that interact with TLE corepressors) results in part from the chaperoned redistribution of TLE corepressors from proximal promoter regions of target genes to distal chromatin regulatory sites.


Sign in / Sign up

Export Citation Format

Share Document